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There are two quite different approaches to deriving an electroacoustic theory. The first was suggested
by Enderby and Booth 50 years ago and later modified by Marlow, Fairhurst and Pendse. The second was
suggested by O'Brien about 10 years ago (O'Brien’s approach). He introduced a special relationship between
kinetic coefficients that is assumed to be valid in a concentrated system. This approach requires also a
theory for dynamic electrophoretic mobility. The most recent version of this theory for concentrated systems
was created by Ohshima, Shilov, and A. Dukhin on the basis of the cell model. A hybrid of the O’Brien
relationship and this new clectrophoretic mobility theory yields expressions for electroacoustic effects in
the concentrated systems. We call it "hybrid O'Brien’s theory”. In principle these two approaches must
lead to the same result. To test this expectation, we should generalize the first approach such that it is
valid for concentrates. We have done this using the Kuvabara cell model for calculating the hydrodynamice

drag coefficient and the Shilov—Zharkikh cell mode

1 for electrokinetics. In addition we used a well-known

“coupled phase model” for describing the relative motion between the particles and the liquid in the
concentrated system. The coupled phase model allows us to eliminate superposition assumption for
hydrodynamic fields for incorporating particle polydispersity into the theory. For dilute systems the new
theory gives exactly same result as O'Brien’s dilute case theory. Surprisingly, in the concentrated systems
this theory yields a new relationship for electroacoustic phenomena. It does not converge to the “hybrid

O'Brien theory”. Why? It turned out that O'Brien’s re

lationship contradicts the Onsager relationship in

concentrated systems at the extreme case of the low frequencies when the Onsager relationship is valid.
The new theory satisfies the Onsager principle and it converges to the Smoluchowski limit at any volume
fraction assuming thin double layer and negligible surface conductivity. We have tested this new theory

experimentally using silica Ludox TM (30 nm) and ruti

le R-746 Dupont (about 300 nm). In both cuses we

performed an equilibrium dilution protocol. This experimental test confirmed our new theory for volume
fractions up to 45 vol %. It also showed that O'Brien’s relationship leads to hundreds percents of errorin
concentrated systems. [t is important to mention here the difference between the original O'Brien’s theory
and software used in the commercially available elecroacoustic spectrometer Acoustosizer. Thisinstrument
cmiploys O’Brien’s method, but it contains an additional unavailable empirical correction (Hunter, R. J.
Colloids Surf. 1998, 141, 37-65) for concentrates. This empirical correction masks original theoretical

results.

Introduction

There are two quite different approaches to deriving an
electroacoustic theory. Historically the first began with
works by Enderby and Booth.23 They simply tried to solve
a system of classical electrokinetic equations without using
any thermodynamic relationships. It was very complex
because they took into account surface conductivity effects.
Although this initial theory was valid only for dilute
systems, this approach was later expanded by Malrow,
Fuirhurst, and Pendse,* who tried to generalize it for
concentrated systems using a Levine cell model.5 This
approach leads to somewhat complicated mathematical
formulas. Perhaps this was the reason it was abandoned.
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An alternative approach to electroacoustic theory was
suggested later by O'Brien.® He introduccd the concept of
a dynamic electrophoretic mobility u, and derived a
relationship between this parameter and the measured
electroacoustic parameters such as colloid vibration cur-
rent (CVI) or electrosonic amplitude (ESA):

ESA(CVI) = C,, 04 1, E(VP) (1)

where C., is a cell constant, ¢ is the volume fraction
of solid, P is the hydrodynamic pressure, and E is the
external electric field strength. The parameter o is a
contrast between particle density (p,) and liquid density

(Pm): :

o=t Lo (2)
P

Later O'Brien stated that his relationship is valid for
concentrated systems as well.

According to O’Bricn, a complete functional dependence
of ESA(CVI) on key parameters such as {-potential,
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Both particles and liquid move with an acceleration
created by the sound wave pressure gradient. In addition,
because of inertia effects, the particles move relative to
the liquid which causes viscous friction forces acting
between the particles and liquid.

The balance of these forces can be presented using the
following system of equations written separately for
particles and liquid:

iup

«
—¢ VP =yp, i +ylu, —u,) (3)

u g,
—(1 - (/)VP =(1- (fﬁ)pm 7 - y(up - Um) (4)

where u,, and u, are velocities of the medium and particles
in the laboratory frame of reference, ¢ is time, and y is a
friction coefficient which is proportional to the volume
fraction and particle hydrodynamic drag coefficient Q:

91g Q

2?
Fy=61naQu, —u,,)

where 5 is dynamic viscosity and a is the particle radius.

This system of equations (3) and (4) is well-known in
the field of acoustics. It has been used in several papers!® '
for calculating sound speed and acoustic attenuation. It
is valid without any restriction on volume fraction.
Importantly, it is known that this system of equations
yields a correct transition to the dilute case.

This system of equations is normally referred to as the
“coupled phase model”. The word “model” usually suggests
the existence of some alternative formulation, but it is
hard to imagine what one can change in this set of force
balance equations, which essentially express Newton’s
second law. Perhaps the word “model” is too pessimistic
in this case.

This system of equations can be solved for the speed of
the particle relative to the liquid. The time and space
dependence of the unknawn un,, and u, is presented as a
monochromatic wave Aef**"%, where j is a complex unit
and / is a complex wavenumber. As a’result, the system
of equations (3) and (4) yields the following relationship
between the gradient of pressure and the speed of the
particle relative to the fluid:

¢ (p, = py)

- 5)
oot 1oy (L~ i)

Y, = uy)

where p, = ¢p, + (1 = ¢)pm; ¢ is volume fraction of the
solid particles.

The relative motion of the particles (u, — un) disturbs
the double layers surrounding the particles and conse-
quently induces electroacoustic phenomena. This rela-
tionship between the particle motion and the resulting
electroacoustic signal is described next.

CVI as a Sedimentation Current. Sedimentation
current is well-known from classical colloid chemistry
handbooks.!2!7!¥ Simply put, charged particle sediment
due to gravity will develop a sedimentation potential
between two vertically spaced electrodes. If we externally
short circuit these electrodes, the current which flows is
referred to as sedimentation current. We can extend this
simple concept to include colloid vibration current by
<mnlv renlacine the acceleration of gravity with analogous
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Figure 2. Mechanism of the double layer polarization gen-
erating sedimentation current for a single particle.

acceleration caused by the applied acoustic field. Thisidea
is described in more detail in the last section.

Figure 2 illustrates a particle with a double layer moving
relative to the liquid. This motion involves ions of the
double layer. In this case we consider only the positive
counterions opposing the negatively charged particle
surface. The hydrodynamic surface current /_reduces the
number of positive ions near the right particle pole and
enriches the double layer with extra ions near the left
pole. As a result, the double layer shifts from the original
equilibrium. The negative surface charge dominates at
the right pole whereas extra positive diffuse charge
dominates at the left pole. The net result is that the motion
has induced a dipole moment.

This induced dipole moment generates an electric field
which is usually referred to as a colloid vibration potential
(CVP). This CVP is external to the particle double layer.
It affects ions in the bulk of the electroneutral solution
beyond the double-layer-generating electric current /,.
This electric current serves a very important purpose. It
compensates for the surface current /, and makes the whole
picture self-consistent.

The next step is to add a quantitative description to
this simple qualitative picture. To do this we must find
a relationship between the CVP and u, — u,,. Appendix
1 gives a complete mathematical description of this
problem. We solved this problem using the Shilov—
Zharkikh cell model.!” Advantages of this cell model over
the Levine cell model® are given in ref 9.

Calculations yield the following expression for colloid
vibration current (CV1):

BeeolKT ¢ uy ©
K.a 1-¢sinforts
¥ 2.
where ¢ and ¢, are the dielectric permittivities of the
medium and vacuum, ¢ is the electrokinetic potential, «
is the particle radius, K,, and K, are complex conductivities
of the medium and system, ¢ is the volume fraction, r and
¢) are the spherical coordinates associated with the particle
center, and u, and u, are the radial and tangential
velocities of the liquid motion relative to the particle.
The next step in the development of this CVI theory is
the calculation of the hydrodynamic field assuming that
the speed of particle with respect to the liquid is given by
expression 5. This is done in the next section and Appendix

2.

CVI = CVP*K, =
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Calculation of Hydrodynamic Field Using the
Nonstationary Kuvabara Cell Model. In this section
we calculate the particle drag coefficient y and tangential
speed of the liquid u, which is a part of eq 6. We will
perform this calculation assuming that liquid is incom-
pressible. This condition is valid only when wavelength
A is much larger than particle size:

A>»a (7)
This is the so-called long wavelength requirement. It

allows us to use traditional hydrodynamic equations for
liquid velocity u and hydrodynamic pressure P:

L*_Lf’_ Pm #\%—% = rot rot u + grad P (8)
I
’ divu =0 (9)

This system of equations has been solved by A. Dukhin
et al.!® for a Happel cell model. Here we suggest another
solution using the Kuvabara cell model. Both models
apply the same boundary conditions at the surface of the
particle:

ur=a)=u, - u, (10)

ur=a)=—(u, —ug) (11)

However, the boundary conditions at the surface of the
cell are quite different for the Kuvabara cell model and
are given by the following equations:

rotu,_, =0 (12)

ur=b)=20 (13)

The general solution for the velocity field contains three
unknown constants C, C, and C.:

3 3
u(r)= C(l _b )+ 1.5 frb (1 - 26—3) h(x)dx (14) -

I'J r

= b’ 5 (142 ) hw a
ur =—C|l1+ 5~ 1. S o5) i dx (15)

h(x) = C h (x) + Cyhy(x) (16)
The values of these constants and special functions are

given in Appendix 2.
The final expressions for the drag coefficient and

tangential velocity are

3 dh A [
y= “’pmfp[:ﬁ (-&t ;Lu ‘J] an
duy B, — u, () "
T 57 (18)

wherea = Q’J"“Mj, f = ba/a, v is kinematic viscosity, and
y is dynamic viscosity. The values of the special functions
h(x) and I(x) are presented in Appendix 2.

CVI for Monodisperse System. Substituting the drag
coefficient into eq 5 and applying the result to eq 6 give

Y]
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Figure 3. Theoretically calculated normalized CVI (eq 22)
versus frequency for dispersion with 20 vol % of 1 sm particles.
Density of the liquid is 1 g/cm®, of the particles - 2 g/cm?.

us the following expression for CVI:

CVI =
3een&(1 — ¢)g (p, — py)
29(1 + 0.5¢)  p,

H+[I/1 - )]
_(1 ——(/)pp_ps

VP

1.5H 1

(19)

B

In deriving this equation we used the Maxwell—Vagner
relationship between conductivity of the system and the
conductivity of the medium:?*!

Ks= 1-g¢
K 1+ 0.5¢

m

(20)

This expression is valid for nonconducting particles,
thin double layer, and for low surface conductivity (Du <
1).

It is possible to show that eq 19 converges to O’Brien’s
dilute case theory when ¢ — 0.

Atthe same time thisresult for CVI differs significantly
from the expression for CVI obtained on the basis of the
same cell model for dynamic electrophoretic mobility and
O’Brien’s relationship in concentrated systems.! This
theory which we referred to as “hybrid O’Brien’s theory”
yields the following expression for CVI:

_ Beel(1 — ¢)q¢ (p, = pr) H + [IN1 — ¢)]
2n9(1 + 0.5¢) Pm Py~ Pm

m

CVI°
1.5H — 1

(21)

Figure 3 illustrates the differences between two theories
for dispersion with 20 vol % of 1-um particles. The density
of the particles is 2 g/cm?®, the density of the medium is
1 g/cm?, and the {-potential is 25 mV. The electroacoustic
signal is dimensioned according to the following expres-
sion:

2np,,

—_— 22
3660‘/ (pp - pm) ( )

electroacousticSignal = CVI

(20) Lyklema, J. Fundamentals of Interface and Colloid Science;
Academic Press: New York, 1993; Vol. 1.

(21) Dukhin, S. S.; Shilov, V. N. Dielectric Phenomena and the Double
Layer in Disperse Systems and Polyelectrolytes. John Wiley & Sons:
New York, 1974.
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Electroacoustic Theory for Concentrated Dispersions

Substituting the corresponding value of b into eq 28, we
obtain the following expression for the electric field
generated by each fraction:

3ol 1 Oy,
CVP =k a1 - @) sin 6 or =

m™i

(32)

The radial derivative from the tangential velocity contains
dependence on the speed of the particle motion in the
sound wave according to eq 18:

1 w3 — uh(a)

sinforr_, I(o) (33)

where h and I are special functions given in Appendix 2.

The total CVP value can be calculated as superposition
of the fractional CVP;. The total electroacoustic current
equals CVP multiplied by the complex conductivity of the
dispersion K,:

CVl=
q;ih(ai)

>

9e€otK (py — Pm)wVP =1 ad(a)wp, + (vi/e))

4K (1 — ¢) Pp N Vi
1+

(1 = @)py, i=1jwp, + (vilg)
(34)

The particle drag coefficient y; was calculated above (eq

17):

. 3H(a,)
Vi = JO0¢Pm | D10y T 1 (35)

where

_a;Jwpy

i «/57]

The final expression for CVI of the polydisperse system
is the following:

CVl =
@:h(a;)

N
9e€ K (p, — Pm)VP .‘;jail(on,«)(pp - p((BH/2I}) + 1))
p N @(BH/2I)+1)

4K n(1 — ¢)

1-¢i=1 Pp— ((3H‘/2I,) + 1)
(36)

where special functions &, H, and I are given in Appendix
2; H; = H(), I; = I(o).

Figure 3 illustrates graphically the influence of the
particle size distribution width on the electroacoustic
effect.

This theory has been created for the case of the thin
double layer. It can be generalized for the arbitrary double
layer thickness following classical papers by Babchin and
Sawatzky.?!?

Qualitative Analysis. We think that it is helpful to
create some heuristic understanding of the physical
phenomena which take place when an ultrasound pulses
passes through a dispersed system. This description

Langmuir G

provides answers to some general questions. Forinstance,
why do we need density contrast in the case of ESA when
the particles already move relative to the liquid under the
influence of an electric field? Why do we need a density
contrast to generate CVI at low frequency when the
particles already move in phase with the liquid?

As far as we know there are no simple published answers
to these questions. To find these answers, we utilize an
analogy between sedimentation potential and electro-
acoustic phenomena. Marlow has used this analogy
before,* and we will give further justification for this
approach. -

Let us consider an element of the concentrated dispersed
system in the sound wave (Figure 4). The size of this
element is selected such that it is much larger than the
particle size and also larger than the average distance
between particles. As a result, this element contains many
particles. At the same time this element is much smaller
than the wavelength.

This dispersion element moves with a certain velocity
and acceleration in response to the gradient of the acoustic
pressure. As a result, an inertia force is applied to this
element. At this point we can use the principle of
equivalency between inertia and gravity. The effect of the
inertia force created by the sound wave is equivalent to
the effect of the gravity force.

This gravity force exerts on both particle and liquid
inside the dispersion element. Densities of the particles
and liquid are different, and forces are different as well.
The force acting on the particles depends on the ratio of
the densities.

The question arises as to what density should we take
into account. To answer this question, let us consider the
forces acting on a given particle in the gravity field. The
first force is the weight of the particle, which is proportional
to its density p,. This force will be partially balanced by
the pressure of the surrounding liquid and other particles.
This pressure is equivalent to the pressure generated by
an effective medium with density equal to the density of
the dispersed system. It becomes clearer when one
considers a larger particle surrounded by smaller ones as
shown in Figure 4.

We are coming to the well-known conclusion that this
force is proportional to the density difference between
particle p, and dispersed system p,.

It is important to mention here that this force is not
necessarily a buoyant force. The last one is proportional
to the difference between particle p, and dispersion
medium pp, according to the Archimedes law. Figure 5
illustrates this difference. This figure shows sedimentation
of the small spherical cloud of particles in the liquid. Case
1 corresponds to the situation when the cloud settles as
one entity and liquid envelopes this settling cloud from
outside. Case 2 corresponds to a different case when liquid
is forced to move through the cléud. There will be a
difference between forces exerting on the particles within
the cloud. There is additional force in case 2 caused by
liquid pushed through the array of particles.

Electroacoustic phenomena correspond to case 2. This
happens because the width of the sound pulse W is much
larger than wavelength 1 at high ultrasound frequencies.

W= 37

The balance of forces exerted on the particlesin a given
element of the dispersion consists of the effective gravity
force, the buoyancy force, and the friction force related to
the filtration of the liquid through the particle array. As
a result, particles move relative to the liquid with a speed
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up — uy which is proportional to the density difference
between particle and system p, — p;.

The motion of the particles relative to the liquid disturbs
their double layers and as a result generates an elec-
troacoustic signal. This electroacoustic signal is zero when
the speed of the particle equals the speed of the medium,
which happens when the density of the particle equals
the density of the dispersed system. This means that the
electroacoustic signal must be proportional to p, — p,. This
conclusion is rather unexpected because O’Brien’s rela-
tionship makes CVI proportional to p, — pp.

We can confirm this conclusion using the Onsager
principle at the low-frequency limit.

Low-Frequency Limit. The Onsager reciprocal re-
lationship follows from the reversibility of time. It links
together various kinetic coefficients. This relationship is
certainly valid in the stationary case. Much less is known
about its validity in the case of alternating field. This
means that we can use this relationship only in the limiting
case of very low frequency when w — 0 or at least much
lower than the characteristic hydrodynamic frequency wnq
and electrodynamic frequenoi_gs Wed:

w < wyy = via® (38)
':cm QEC (39)

where v is kinematic viscosity, v = y/p;, 1 is dynamic
viscosity, a is particle radius, K,, is conductivity of the
medium, and ¢ and ¢, are dielectric permittivities of the
vacuum and medium.

The Onsager relationship provides the following link
between quasi-stationary streaming potential CVP, ef-
fective pressure gradient which moves liquid relative to
the particles VP,,, electrosmotic ‘current Iy, and elec-

troosmotic flow (V):

<V> ' — (CVPm—'0>
d >(VP)=0 (VP rel>(l)=0
To use this relationship with respect to CVP, we need

to know the effective gradient of pressure. This parameter
can be easily obtained following the “coupled phase

W <KWy =K [ecg

(40)
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model”!3-16 for characterizing particle motion in the sound
field for a concentrated system. The total friction force
exerting on particles equals y(u, — un). This force is a part
of the pressure gradient which moves particles relative to
the liquid. In the extreme case of low frequency eq 5 leads
to the following expression for this effective pressure
gradient:

_ 9ley — pd)
Ps

VP, vP (41)

In addition, we can use the obvious fact that the
expression in the left-hand side of the eq 40 is the
electrophoretic mobility divided by the complex conduc-
tivity of the system K*,. As a result, we obtain the following
expression for CVI:

#lpy — py)

VP (42)

CVI, ., =CVP*K* =4

w—0
s

This expression specifies colloid vibration current at

the low-frequency limit. It means that x4 is a usual

stationary case electrophoretic mobility. We can use the

Smoluchowski law for electrophoresis® in the form which

is valid in concentrated systems:

_€€el K
u= _77_Km (43)

Here we used two conditions (38) and (39) which restrict
applicability of the Smoluchowski law.

A small Dukhin number allows us to apply Maxwell—
Wagner theory (eq 20) for expressing conductivity ratio
through the volume fraction. As a result, we obtain the
following equation for asymptotic value of CVI at low
frequency:

_ et (1 = @)y (p, = p,)
@ 0T 1+ 0.5¢)  p,

CVI VP (44)

This is a very important result because it provides a
test for electroacoustic theory. Comparing eq 19 and eq
44, it becomes clear that our new theory satisfies this test
because the ratio of the special functions I/H goes to 0 at
low frequency.

At the same time O’Brien’s theory does not meet the
criterion of the low-frequency transition. Comparison of
eq 21 with eq 44 yields the following ratio between
O’Brien’s theory and the low-frequency asymptotic:

CVI°(w=0) _(p, ~ Prm)Ps Py

=14+——— (45)
CVI ., oy PJPm  Pull—¢)

We test these conclusions with the experiment described
in the next section.

Experiment

The main goal of this experiment is testing the validity of the
suggested theory in concentrated systems. Equilibrium dilution
isthe logical experimental protocol for achieving this goal because
it provides a simple criterion of the theory. Equilibrium dilution
maintains the same chemical composition of the dispersion
medium for all volume fractions. As a result, parameters that
are sensitive to the chemistry must be the same for all volume
fractions. This means that the {-potential calculated from CVI
is supposed to remain the same for all volume fractions. Variation
of Z-potential with volume fraction is an indication that particular
theory does not reflect volume fraction dependence properly.

Langmuir 1

We perform this dilution test with two different dispersions:
silica Ludox and rutile R-746 produced by Dupont. We use two
different techniques for producing the equilibrium dispersion

——medium for dilution: dialysis and centrifugation. We perform

this experiment with the acoustic and electroacoustic spectrom-
eter DT-1200.24%5 The next section describes a method of CVI
measurement employed by this instrument.

CVIMeasurement. The electroacoustic spectrometer consists
of two parts: the electronic part and the sensor part.

Allelectronics are placed on two special-purpose boards (signal
processor and interface). It also requires a conventional data
acquisition card. The signal processor board and DAC are placed
inside a personal computer which performs an interface with the
user using Windows-95 based software.

The electroacoustic sensor has two parts: a piezoelectric
transducer with a critical frequency of 10 MHz and an elec-
troacoustic antenna (Figure 4). There is another design where
a sensing electrode is placed on the surface of the transducer. We
call this design “electroacoustic probe”.

The antenna is designed as two coaxial electrodes separated
with a nonconducting rigid ceramic insert. Internal electric
impedance between these electrodes can be selected depending
on the conductivity range of the samples by means of an internal
transformer. The transformer is selected such that the input
impedance is significantly less than the external impedance of
the sample and the resultant signal is proportional to the short
circuit current. This transformeris located just behind the central
electrode in order to minimize the stray capacitance.

The transmitting transducer and the receiving antenna are
mounted in the opposite walls of the sample chamber such that
the gap between the faces is 5 mm.

The signal processor generates the transmit gate which defines
the 1 W pulse generated in the interface module as well as the
necessary signals to set the frequency. Electroacoustic measure-
ment can be performed either for one frequency or for the chosen
set of frequencies from 1 to 100 MHz. The transducer converts
these pulses to the sound pulses with some certain efficiency.
The sound pulse propagates through the quartz delay rod and
eventually through the sample. The acoustic pulse propagating
through the sample excites particles and disturbs their double
layers. Particles gain dipole moments because of this excitation.
These dipole moments generate an electric field. This electric
field changes the electric potential of the central electrode of the
electroacoustic antenna. The difference of the electric potentials
between the central electrode and the external reference electrode
causes electric current. This current is registered as colloid
vibration current.

The value of this current is very low. It takes averaging of at
least 800 pulses in order to achieve the high signal-to-noise ratio.
The number of pulses depends on the properties of the colloid.
Measurement of CVIin low conducting oil based systems requires
averaging of millions of pulses. In principle, this method makes
it possible to measure any low-energy signal.

We suggest interpreting this measurement as propagation of
the pulse through the transmission line with certain energy losses
at different points. This approach allows us to eliminate
measurement of the absolute powers. We simply compare pulse
intensity before and after transmission and take into account all
internal energy losses. This idea is accomplished as described
below. .

At the beginning of the each measurement the interface routes
the pulses to a reference attenuator channel consisting of a fixed
40 dB attenuator and similarly routes the output of this precision
attenuator to the input section of the signal processor. Since the
precision attenuator has a known response over the entire
frequency range, this step allows us to characterize all energy
losses in the measuring circuits at each frequency.

The next step in the measurement is to determine the losses
in the electroacoustic sensor. The signal processor now commands
the interface to substitute the electroacoustic sensor for the
reference attenuator. The 1 W pulses are now sent to the

(25) Dukhin, A. S.; Goetz, P. J. Method and device for characterizing
particle size distribution and zeta potential in a concentrated system
by means of Acoustic and Electroacoustic Spectroscopy. US Patent,
pending.
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transmitting transducer, which converts these electric pulses to
sound pulses. We have certain energy losses at this point. This
loss depends on the transducer efficiency and is pretty much
constant.

The sound pulses propagate through the quartz delay rod (see
Figure 4) and eventually reach the surface of the transducer
which faces dispersion. It loses some energy at this point because
of the reflection caused by mismatch of the acoustic impedances
of the delay rod (Z,,) and dispersed system (Z,).

Some part of the pulse passes into the gap between the
transducers which is filled with the dispersion under test ande
propagates through it. It loses energy during propagation due
to the attenuation.

At last this sound pulse reaches the electroacoustic antenna
which converts it back to an electrical signal. This conversion is
also related to energy losses.

This final electric pulse is routed through the interface to the
input signal port on the signal processor where the signal level
of the acoustic sensor output is measured. Comparison of the
amplitude and phase of the electroacoustic sensor output pulse
with that of the reference channel output pulse allows the
program to calculate precisely the overall loss in the sensor at
each frequency.

Experimental output of the electroacoustic sensor Sy is the
ratio of the intensity of the input electric pulse to the transducer
ILin to the output electric pulse in the antenna I, (Figure 4):

Soo =L/l (46)

exp ~ “out

The intensity of the input electric pulse is related to the
intensity of the sound pulse in the delay rod through some
constant C,., which is a measure of the transducer efficiency and
energy losses at this point:

Irod = CtrIin 47)

The intensity of the sound in the delay rod is proportional to
the square of the sound pressure, here Pyq:

Prod = 2prodcdeuJin (48)

where p,od and cruq are density and sound speed of the rod material.
At the other end we can use definition of the electric pulse
intensity as a square of the electric current in the antenna, which

is CVI:
I, = (CVD?C,,, (49)

where the constant C,, depends on a geometrical factor of the
CVI space distribution in the vicinity of the antenna and electric
properties of the antenna only for the proper ratio of the electric
impedancies of the antenna and dispersed system.
Substituting eq 49 into eq 46, we obtain the following
expression relating CVI to the measured parameter Sexp:

CVI/Prod = \/Sexp/zprudcrodctrcam (50)

The value of CVI depends on the pressure near the antenna
surface P,n.. This pressure is lower than pressure in the rod Prog
because of the reflection losses on the rod surface and attenuation
of the pulse in the dispersion. There are two ways to take into
account these effects. We can either measure corresponding losses
using reflected pulses or we can calculate these losses. If we
choose the second way, we should use the following corrections:

2Z, ol
Puw= Pz 5= o0~ %) (51)

rod

where a is attenuation of the sound intensity expressed in neper
per centimeter and L is the distance between transducer and
antenna in centimeters. These corrections lead to the following
expression for CVI:

Dukhin et al.

CVI _ Z,+Zy (ol
Pam. - \/Sexp/zcanlctrprodcrud _2Ts— GXP(T) (52)

The gradient of pressure VP in the eq 19 for CVI equals the
gradient of the pressure Pq,. Using this fact and substituting
CVI from eq 52, we obtain the following equation relating
properties of the dispersion to the measured parameter S,

3eeol(1 — @) (p, — p,)

T 10560  p C@N=
cCey . ac 2+ 2.4 oL
F (1 - 27) Sexp —————22‘ exp (7) (53)

where c is sound speed in the dispersion, fis frequency in hertz,
and

H+ [I(1 - ¢)]

Gla,q) =

1= —p.
1.5H——-%'i1

In the case of the polydisperse system we should use eq 36 for
expressing CVI in eq 52.

Equation 53 contains the unknown calibration constant Ce.
which is independent of the properties of the dispersion. This
constant can be calibrated out using calibration with the known
colloid. We use for this purpose silica Ludox at 10 wt % diluted
with 10 2 mol/LL KCl. These silica particles have ¢-potential of
—38 mV at pH 9.3.

Expression 53 can be used for calculating either ¢-potential
only in the case of a single frequency measurement or both
¢-potential and particle size in the case of multiple frequencies.

The new theory yields a new range of the frequencies. This
theory predicts that critical frequency becomes higher with
increasing volume fraction. This is seen from the graphsin Figure
2. Computer computation shows that this shift is about 1 order
of magnitude for 40% volume fraction. This means that the
optimum frequency range according to the new theory is

via® < w < 40via* (54)

if we want to cover volume fractions up to 40%.

Materials and Experimental Protocol. We used silica
Ludox and rutile R-746 from Dupont for this experiment.

Selection of the silica Ludox is related to the small size of the
particles. Thisallows us to eliminate any particle size dependence
in eq 53 because G(a,¢) = 1 for small particles. Using small
particles gives one more simplifying advantage: it eliminates
contribution of attenuation because small particles do not
attenuate sound at low frequency. This means that the choice
of small particles allows us to test volume fraction dependence
only. It is important because this dependence is the most
pronounced difference between different theories.

Silica Ludox TM satisfies all specified conditions because its
nominal particle size reported by DuPont is about 22 nm. We
measure the size using acoustics. It is quite close to the nominal
value as will be shown below. At the same time particle size
should not be too small for the given ionic strength in order to
satisfy the thin double layer restriction (eq 1.3). Silica Ludox
meets this requirement because of the relatively high ionic
strength about 0.1 mol/L. Otherwise we would have to generalize
the theory removing the thin double layer restriction following
Babchin et al. papers.?223

Selection of rutile as the second dispersion gives us an
opportunity to test particle size dependence and enhance the
density contrast contribution. We used rutile R-746 produced by
E.I. DuPont de Nemours. This product was a concentrated stable
dispersion with 76.8 wt % solids. We took 100 mL of this dispersion
and weighed it. This weight was 234 g, which yields particle
material of 3.9 g/cm® average density. This density was somewhat
lower than the density of the regular rutile, perhaps because of
the stabilizing additives.

Equilibrium dilution protocol requires a pure solvent which
is identical with the medium of the given dispersed system. In
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Figure 6. Kinetic curve describing variation of pH in the
external dialysis solution versus time for silica Ludox.

principle one can try to separate the dispersed phase and
dispersion medium using either sedimentation or centrifugation.
This method does not work for silica Ludox because the particle
size is too small.

The other way to create an equilibrium solution for silica Ludox
is dialysis. We used this one. Dialysis allows us to equilibrate the
dispersion medium with external solution over some period of
time. We used regenerated cellulose tubular membrane
Cell*Sept4 with pore size 12 000—14 000 Da. The external
solution was 10°1 mol/L KCL with pH adjusted to 9.5 using
hydrochloric acid. Membrane filled with silica Ludox was placed
inside the KCI solution which was continuously mixed with a
magnetic stirrer. We made two samples in order to check
reproducibility.

In addition we prepared another setup using KCI solution
with pH 3. This setup allowed us to estimate the equilibration
time. The initial pH of the silica Ludox is about 9 at 23 °C. We
monitored the change of the pH in the external solution. The
corresponding kinetic curve is shown in Figure 6. It is seen that
pH becomes 8.6 after 3 h of equilibration. This was close to the
final pH value of 8.7 after 12 days of equilibration. We waited
12 days because equilibration time depends on the diffusion
coefficient, which is highest for H ions. The higher diffusion
coefficient, the lower the equilibration time.

Before starting dilution we checked again the weight fraction
of the silica Ludox using a pycnometer. We were concerned about
losing silica particles through the membrane pores into the
solution. The weight fraction remained unchanged, which means
that the pores were too small for silica particles.

We had two sets of 50% silica with corresponding equilibrium
solution. This allowed us to check two ways of dilution. We used
one set for diluting from the high weight fraction down. We did
this adding solution to the dispersed system. We used the opposite
procedure with the other sample. We added dispersed system to
the solution.

In the case of rutile we used centrifugation of the initial 76.8
wt % dispersion in order to create equilibrium supernate. We
used this supernate for preparing equilibrium 1.1 vol % rutile
dispersion diluting the initial dispersion. After measurement
with this dilute system, we added more initial dispersion for
preparing the next volume fraction: 3.2 vol %. We proceeded
this way making a more and more concentrated system. All
together 11 different volume fractions from 1.1 to 45.9 vol %
were tested (see Figure 8).

For each volume fraction we measured attenuation spectra,
sound speed, pH, conductivity, temperature, magnitude, and
phase of CVL

Attenuation spectra were measured in the frequency range
from 3 to 100 MHz, sound speed at 10 MHz, conductivity at 3
MHz, magnitude of CV1at 3 MHz, and phase of CVI at 1.5 MHz.
Some of the results are discussed below.
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Figure 7. Attenuation spectra measured for silica Ludox TM
at different volume fractions.

Results and Discussion

Measured attenuation spectra are shown in Figures 7
and 8. The attenuation for silica Ludox is much lower
than that for rutile. This happens because of the smaller
size and lower density contrast for silica. Attenuation
spectra of silica become almost indistinguishable at volume
fraction above 9%. This reflects a nonlinear dependence
of the attenuation on the volume fraction. This nonlin-
earity appears because of the particle—particle interaction.
This interaction shifts critical frequency to the higher
values.

This peculiarity of the attenuation spectra was known
before.'5 It is even more pronounced for rutile (Figure 8).
Attenuation at low frequency decreases with increasing
volume fraction above 16.6 vol %. It is exactly the same
effect that makes attenuation constant for silica.

Existing theory takes into account this nonlinear effect.
As a result, particle size calculated from this attenuation
spectra is almost constant for all volume fractions for both
silica and rutile (Figure 9). A slight increase at high volume
fraction can be caused by aggregation. It is important to
mention here that the dilute case theory would yield size
decreasing dramatically with volume fraction.

Itis seen that our size is somewhat larger than nominal.
Perhaps the difference from nominal value is caused by
a different technique applied by Dupont for characterizing
the size of these particles. It is also clear that nominal
size corresponds to the dilute system whereas we measured
size for the concentrated one.

It is seen (Figure 7) that attenuation for silicaat 3MHz
is negligible indeed. This means that our expectations to
eliminate this contribution to the CVI measurement using
small particles were true.

At the same time we have appreciable attenuation for
rutile at 3 MHz. This gives us a chance to verify the way
we correct CVI for sound. attenuation (eq 53).

The sound speed of the silica Ludox dispersion varies
only within 2% for weight fraction changing from 1 to
50% (see Figure 10). It eliminates contribution from the
changing of the acoustic impedance to the measured CVI
for silica as well.

Figures 11 andillustrate the main results of this paper.
They give {-potential calculated from the measured CVI
using various theoretical models. Only our new theory’
yields a {-potential that remains almost the same within
the complete volume fraction range. Variations do not
exceed 10%.
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Figure 8. Attenuation spectra measured for rutile R-746 at different volume fractions.

At the same time “hybrid O’Brien’s theory” produces a
big drop in the ¢-potential at high volume fraction. This
theory is the combination of O’Brien’s relationship and
our cell model theory for dynamic electrophoretic mobility.
In the case of rutile error reaches 300% at volume fraction
of 45.9%.

Similar results for silica allow us to conclude that the
reason for this erroneous {-potential drop is O’Brien’s
relationship but not our theory for the dynamic mobility.
Our theory reduces in this case to the Smoluchowski law.
Itis O’Brien’s relationship which brings about 100% error
in ¢-potential for silica at 30 vol %.

The situation becomes even worse for the original
O’Brien theory combined with the Levine cell model. In
principle we are able to apply the original O'Brien theory
asitis presented in the patent” with the Levine cell model.
However, instead of recovering these complicated math-
ematical expressions, we decided just to show the effect
of the missing volume fraction dependence. It is known®
that the Levine cell model lacks the multiplier K/K,
compared to the Shilov—Zharkikh cell model.”* This
difference is a major factor distinguishing “O’Brien—
Levine theory” and “hybrid O’Brien theory” for this
particular dispersion. These theories have different
particle size dependence, but in the case of relatively small
particles this difference is not very important. However,
we neglect difference in particle size dependence and take
into account only different volume fraction effects. The
last curves marked as “O’Brien—Levine theory” illustrate
results produced by this theory within the scope of the
above-mentioned assumption of the same particle size
dependence for two theories.

Conclusions

We have derived a new electroacoustic theory without
using O’'Brien’s relationship between electroacoustic signal
and dynamic electrophoretic mobility. Instead we use the
coupled phase model and the cell model concept. We

manage to extend this theory to polydisperse systems
without using superposition assumption for the hydro-
dynamic part of the problem. This new theory is supposed
to be valid for polydisperse concentrated dispersions with
low surface conductivity and thin double layer.

The new theory gives the same result as O’Brien’s theory
in the dilute system. At the same time this new theory
predicts quite different values of the electroacoustic signal
in concentrated systems.

We have shown that our new theory satisfies Onsager’s
and Smoluchowski’s principles at low frequency at any
volume fraction.

At the same time the “hybrid O’Brien’s theory”, which
employs O’Brien’s relationship and the cell model theory
for the dynamic electrophoretic mobility, does not meet
Onsager’s and Smoluchowski’s principles at low frequency
for concentrated systems. We came to the conclusion that
this happens because of O’Brien’s relationship.

We have tested both theories with an equilibrium
dilution experiment using silica Ludox and rutile R-746
from Dupont.

The test with silica Ludox TM confirmed that our theory
gives correct volume fraction dependence within a whole
available range of the volume fraction up to 30 vol %,
whereas O’Brien’s relationship leads to significant (100%)
deviation from the experimental data.

The equilibrium dilution test with the stable rutile
dispersion proved that our theory gives the correct particle
size dependence within volume fraction ranging from 1.1
to 45.9 vol %, as well as volume fraction dependence. We
have shown that this new theory yields almost constant
{-potential (£10% variation) within the whole volume
fraction range. Polydispersity of the rutile sample was
not a significant factor, at least in comparison with volume
fraction and particle size.

We also calculated -potential using “hybrid O’Brien’s
theory” which employs O’Brien’s reciprocal relationship
and our cell model theory for electrophoretic dynamic
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Figure 9. Median particle size of silica and rutile calculated from the attenuation spectra of Figures 7 and 8.

mobility.?~1! This theory produces {-potential about 4
times smaller (300% error) than expected at the highest
volume fraction of 45.9 vol %.

There is some reason to believe that the situation would
be even worse for the original O’Brien theory with Levine
cell model. It misses an additional volume fraction
dependence related to the conductivity ratio. If we take
into account only volume fraction effect and neglect particle
size dependence for dynamic electrophoretic mobility, error
reaches almost 1000%.

We would like to stress that our new electroacoustic
theory has been created so far for CVI only. It is not clear
yet how to apply it to ESA effects. Required modifications
will depend on the design of the instrument including
ratio of masses of the chamber and the sample. This ratio
determines an appropriate frame of reference. At the same
time the basic physical framework should work for ESA

effect as well as for CVI.

We would also like to stress that to our knowledge the
commercially available electroacoustic spectrometer based
on the ESA principle, the Acoustosizer of Colloidal
Dynamics, applies an empirical correction for calculating
¢-potential from the ESA signal. This follows directly from
the recent review published by Prof. Hunter, who is one
of the Acoustosizer authors.! This correction is nessecary
because, as Prof. Hunter admits, their theory was valid
only up to 5 vol %. This empirical correction works and
reduces dramatically the error of the Acoustosizer in some
concentrated systems. Unfortunately, this empirical cor-
rection masks results of theoretically justified calculations.

Appendix 1. CVI as a Streaming Current

We will use the cell model for describing the relationship
between macroscopic electric field strength (CVP) and local
electric potential distribution ¢ within a cell. According
to this model we equally redistribute liquid between
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electroacoustic theories for rutile R-746 from Dupont.

particles and assume that liquid associated with each
particle creates a spherical cell of radius b. This radius
is related to the particle radius according to the following

expression:
b =ap (1.1)
We prefer to use the Shilov—Zharkikh cell model'® over

the Levine one.* All arguments for this decision are given
in ref 8.

Dukhin et al.

According to the Shilov—Zharkikh cell model macro-
scopic electric field and local electric potential are related
by the following expression:

A[r=b)

CVP:_bcos()

(1.2)

We will calculate electric potential within a cell using
two simplifications. We assume that the double layer
thickness must be much smaller than particle radius a:

a'> 1 (1.3)

where « is reciprocal Debye length.

It is possible to eliminate this restriction in the future
following well-known papers by Babchin et al 2!

The second simplification requires a surface conductivity
« contribution to be negligibly small. This happens when
the dimensionless Dukhin number Du introduced by
Lyklema® is sufficiently small:

Du=Ka<<1 (1.4)

m

This case is very representative. It covers almost all
aqueous systems.

The condition of the thin double layer allows us to
describe distribution of the electric potential ¢ with the
Laplace equation:

Ap=0 (1.5)

The general spherical symmetrical solution of this
equation

¢ =—Ercost + % cos 0 (1.6)
r

contains two unknown constants E and d. Two boundary
conditions are required for calculating these constants.

Surface Boundary Condition. This boundary condi-
tion reflects continuity of the bulk current I and surface
current I

~K,V,6 = —div, I, (1.7)

There is only one essential component in the surface
current when the double layer is thin and surface
conductivity is low. It is caused by hydrodynamic involve-
ment of the electric charge pq in the diffuse layer:

1,= [ pa(x) u, (x) dx (1.8)

We consider double layer as a flat which is obviously
true in the considered case of the thin double layer. The
distance from the particle surface is x.

We can apply Taylor expansion to the tangential speed
up near the particle surface:

ou,
uy(x) = uy(x=0) + x e *=0 (1.9)
The first term equals O because liquid does not slide
relative to the particle on the particle surface. As aresult,
surface current within the thin double layer can be
expressed as follows:

Uy px
IFB?,ZJ) paix) x dx (1.10)
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At this point we imply again a peculiarity of the thin
double layer. There is a known relationship between
electric charge density in the double layer and g-potential:

j;n pq(x) x dx = —€€og (1.11)
Surface current equals
ouy
I, = —€€yl S r=a (1.12)

Substitution of eq 1.12 into eq 1.7 yields the first boundary
condition.

Cell Boundary Condition. The cell boundary condi-
tion specifies the values of the normal derivative of the
electric potential on the cell surface:

a

5%,#, =0 (1.13)
CVP Value. To find CVP, we should calculate unknown

constants E and d using eq 1.13, substitute these constants

into the general solution for ¢, calculate the value of ¢ at

r = b, and substitute this result into eq 1.2. As a result,

we have the following expression for CVP:

_Beeet  o° 1 Ouy
T K,a p3—g3sinf or™

CvPp (1.14)

This expression relates CVP to the yet unknown
derivative of the tangential component of the liquid motion
relative to the particle surface.

Appendix 2. Special Functions

There are several special functions used in this theory.
They are specified as follows:

_ih(@) i dh(x)
Hlo) =5 = 5 g w=e

h(x) = h,(x) ho(B) = hy(B) hy()

1=1Ip) - Io)

I(x) = I(x) — I(x)

Ii(x) =
W31 -x  (x*  3x 1)W
—h,(B)expx(1 + N|———7— T3~ 5~ <
1(B) exp | 2p° (/i“ 2 x
I(x) =
[3(1 + 2
—hy(f) explx(1 + i) —(—J—x) + i(f—a + S—xJ - l)1
| 28 3280 X))
hy(x) =
exp(—x) [x + 1 sin x — cosx+i(x+ L oos x + sinx)]
x
hylx) =
exp(x) [x — 1 sinx +cosx +i (1 —X cosx + sinx)]
x X
LA990317G ‘



B Langmuir

Dukhin et al.

Initial first Approach Inroduction of Levine cell Current theory including:
by Enderby and Booth R model by Marlow, . -coupled phase model,
[2,3] Fairhurst and Pendse. -Shilov-Zharkikh cell model;
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[9-11]

Figure 1. Block scheme illustrating various versions of electracoustic theory.

particle size, and frequency is incorporated into dynamic
electrophoretic mobility. The coefficient of proportionality
between ESA(CVI) and uq4 is frequency independent as
well as independent of particle size and ¢-potential. This
peculiarity of eq 1 made dynamic electrophoretic mobility
a central parameter of the electroacoustic theory.

The first theory of the dynamic electrophoretic mobility
which relates this parameter to other properties of the
dispersed system was created initially by O’Brien for the
dilute case only, neglecting particle—particle interaction.
We call this version the “dilute O’'Brien’s theory”.

Later he applied the Levine cell model trying to expand
dynamic electrophoretic theory to concentrated systems.”
This work was generalized recently by Ohshima.? We call
this version the “O’Brien—Levine” theory.

The last development of this approach was made
recently by Ohshima, Shilov, and A. Dukhin.?~!! We used
the Shilov—Zharkikh cell model for dynamic electro-
phoretic mobility. We call the combination of O’'Brien’s
relationship and our dynamic electrophoretic mobility
theory the “hybrid O’'Brien’s theory”.

(4) Marlow, B. J.; Fairhurst, D.: Pendse, H. P. Colloid Vibration
Potential and the Electrokinetic Characterization of Concentrated
Colloids. Langmuir 1983, 4,3, 611-626. :

(5) Levine, S.; Neale, G. H. The Prediction of Electrokinetic Phe-
nomena within Multiparticle Systems. 1. Electrophoresis and Elec-
troosmosis. J. Colloid Interface Sci. 1974, 47, 520—532.

(6) O'Brien, R. W. Electro-acoustic Effects in a dilute Suspension of
Spherical Particles. J. Fluid Mech. 1988, 190, 71-86.

(7) O'Brien, R. W. Determination of Particle Size and Electric Charge.
US Patent 5,059,909, Oct 22, 1991.

(8) Ohshima, H. Dynamic Electrophoretic Mobility of Spherical
Colloidal Particles in Concentrated Suspensions. J. Colloid Interface
Sci. 1997, 195, 137—148.

(9) Dukhin, A. S.; Shilov, V. N; Borkovskaya,-Yu. Dynamic Elec-
trophoretic Mobility in Concentrated Dispersed Systems. Cell Model.
Langmuir 1995, 15, 3452-3457.

(10) Dukhin, A. S.; Ohshima, H.; Shilov, V. N.; Goetz, P. J.
Electroacoustics for Concentrated Dispersions. Langmuir 1999, 15,
3445-3451.

(11) Ohshima, H.; Dukhin, A. Colloid Vibration Potential in a
Concentrated Suspension of Spherical Colloidal Particles. J. Colloid
Interface Sci. 1999, 212, 449-452.

Figure 1 is a block scheme of the various versions of the
electroacoustic theory and helps to understand this
somewhat complicated situation.

For a time, it looked like O'Brien’s approach had won
out over the other approach because it appeared to yield
a desirable electroacoustic theory for the concentrated
case. However, one important question remains unan-
swered. In principle these two approaches must give the
same result. It is not clear if this is the case. These two
approaches are completely independent and the relation-
ship between them is not known even in the dilute case.

It is obvious that such a comparison must be done. It
would provide strong support for O’'Brien’s theory if the
comparison confirms that the two approaches merge. The
first approach is somewhat more basic. It needs only major
well-tested electrokinetic equations.

To perform the comparison, we need a version of the
first approach theory which would be valid for the same
conditions as O’Brien’s theory, including our recent
generalization for dynamic electrophoretic mobility. The
development of such a theory is a goal of this paper.

We restrict consideration with the simpler case of the
CVI and/or CVP (colloid vibration potential) when the
gradient of pressure is a driving force generating the
electroacoustic signal. We would like to be cautious
concerning expanding this new theory to the ESA phe-
nomenon. It turns out that the problem of frame of
references has different implications for these different
electroacoustic effects.

We will use a “coupled phase model”**!¢ for describing
the speed of the particle relative to the liquid. The

(12) Ohshima, H. Sedimentation Potential in a Concentrated Sus-
pension of Spherical Colloidal Particles. J. Colloid Interface Sci. 1998,
208, 295—-301.

(13) Harker, A. H.; Temple, J. A. G. Velocity and Attenuation of
Ultrasound in Suspensions of Particles in Fluids. J. Phys. D.: Appl.
Phys. 1998, 21, 1576—1588. ‘

(14) Gibson, R. L.; Toksoz, M. N. Viscous Attenuation of Acoustic
Waves in Suspensions. J. Acoust. Soc. Am. 1989, 85, 1925-1934.



Electroacoustic Theory for Concentrated Dispersions

Kuvabara cell model yields the required hydrodynamic
parameters such as the drag coefficient. We connect this
parameter with the generated electric field using the
Shilov—Zharkikh cell model.'* We have derived this new
electroacoustic theory initially the for monodisperse case
and then generalized it for polydispersity without using
the superposition assumption.

We compared the new theory with “hybrid O’Brien’s
theory” and came to the conclusion that they are different.
Which one is correct?

There is an opportunity to derive an independent
expression for CVlin the quasi-stationary limit using the
Onsager relationship and the Smoluchowskilaw. We use
this opportunity and show that our new theory satisfies
the transition requirement to the quasi-stationary limit
at any volume fraction, whereas the O’Brien theory does
only in dilute systems.

This situation resembles somewhat the problem of the
sedimentation potential. There is a simple way to create
a theory of sedimentation potential using the Onsager
reciprocal relationship. However, it turned out that
straight derivation rooted down to the basic physical
equations is also very helpful. In the case of the sedi-
mentation potential, such a derivation performed by
Ohshima!? provides an important background and con-
firmation for Onsager-based theory.

Failure of the O’'Brien relationship to satisfy the Onsager
principle is very unfortunate for electroacoustic theory
because it prevents us from using a very convenient eq 1
and notion of dynamic electrophoretic mobility.

We realize the importance of this conclusion. Itis clear
that such strong statements must be proved with experi-
ment. We have performed this test here using an equi-
librium dilution of silica Ludox TM and rutile R-746
produced by Dupont.

The choice of small silica Ludox particles (30 nm) allowed
us to test O'Brien’s relationship by itself, eliminating
particle size dependence. Basically, this test targeted only
volume fraction dependence. It turned out to be wrong in
O’Brien’s theory and correct in our new theory.

The next logical step to test the theory would be
implementing particle size dependence into the experi-
ment. Actually, we had made an experiment of this kind
once before when we tried to test our cell model theory of
dynamic electrophoretic mobility.!* We used rutile R-900
at low pH for equilibrium dilution protocol. We managed
to make the ¢-potential almost constant for all volume
fractions using an additional multiplier (1 — ¢), where ¢
is volume fraction. We attributed this multiplier to the
problem of the frame of references. Our new theory gives
completely new justification to this multiplier. It is clear
now that this multiplier appears because we should use
the density contrast between particle and system (p, = p)
instead of O’Brien’s version of the density contrast between
particle and medium (pp — Pm)-

There is one more factor contributing to the constant
value of {-potential in our old experiment. We took into

(15) Dukhin, A. S.; Goetz, P. J. Acoustic Spectroscopy for Concentrated
Polydisperse Colloids with High Density Contrast. Langmuir 1996, 12,
4987-4997.

(16) Ahuja, A. S. Wave equation and propagation parameters for
sound propagation in suspensions. J. Appl. Phys. 1973, 44, 4863—4868.

(17) Kruyt, H. R. Colloid Science; Elsevier: New York, 1952; Vol. 1:
Irreversible Systems.

(18) Dukhin, S. S,; Derjaguin, B. V. Electrokinetic Phenomena. In
Surface and Colloid Science; Matijevic, E., Ed.; John Wiley & Sons:
New York, 1974; Vol. 7.

(19) Shilov, V. N.; Zharkih, N. L; Borkovskaya, Yu. B. Theory of
Nonegquilibrium Electrosurface Phenomena in Concentrated Disperse
System. 1. Application of Nonequilibrium Thermodynamics to Cell
Model. Colloid J. 1981, 43 (3), 434—438.
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account reflection of sound using intensity of sound instead
of the gradient of pressure. It was mistakenly done in the
old DT software. The new procedure is described in this
paper. This mistake was another fortunate com pensating
factor.

To our regret it is impossible to recalculate our old
experiment using new theory because the wrong correction
for reflection affects calibration as well. However, it is
clear that we should not expect significant changes because
of the mentioned two fortunately used but wrongly justified
factors. T :

In addition, we are not satisfied with the way we
performed that experiment. We prepared dispersion by
ourselves relying completely on the electrostatic factor of
stability. We used just low pH effect causing high surface
charge. Afterward we used sedimentation in order to
separate particle and supernate. It is not the most reliable
way to do this. Centrifugation is much better.

Taking into account these mistakes of our first experi-
ence with equilibrium dilution, we decided to perform a
completely new test which would be particle size sensitive.
This time we chose the initially stable commercially
available dispersion of rutile R-746 produced by Dupont.

This equilibrium dilution test confirms again our theory
this time including particle size dependence. It also shows
that O'Brien’s relationship leads to hundreds percents of
error at high volume fractions.

We would like to stress that according to our knowledge
the commercially available electroacoustic spectrometer
based on ESA principle, the Acoustosizer of Colloidal
Dynamics, applies an empirical correction for calculating
¢-potential from the ESA signal. This follows directly from
the recent review published by Prof. Hunter, who is one
of the Acoustosizer authors.! The correction is necessary
because, as Prof. Hunter admits, their theory is valid only
up to 5 vol %. This empirical correction works and
dramatically reduces Acoustosizer error in some concen-
trated systems. Unfortunately, this empirical correction
masks results of theoretically justified calculations.

Theory

Frame of Reference. When sound is the driving force
(CVI or CVP), the correct inertial frame is a laboratory
frame of reference since the acoustic wavelength is much
shiorter than the size of the sample chamber. Therefore,
particles move with different phases inside the narrow
sound beam. The chamber as an entity remains immobile.

The question of the frame of reference is more compli-
cated in the case of the electric field as a driving force
(ESA). The wavelength of the electric field is much longer,
and as a result all particles move in the same phase. This
motion exerts a certain force on the chamber. The motion
of the chamber depends on the mass of the chamber and
mass of the sample. Depending on the construction of the
instrument, the inertial system might be related to the
chamber, to the center of mass, or to some intermediate
case depending on the ratio of masses of the chamber and
sample. It means that in the case of ESA the final
expression relating measured ESA signal with properties
of the dispersed system might contain a multiplier which
depends on the mass of the chamber.

Coupled Phase Model. Let us consider the infini-
tesimal volume element in the dispersed system. There
is a differential force acting on this element proportional
to the pressure gradient of the sound wave VP. This
external force is applied to both the particles and liquid
and is distributed between particles and liquid according
to the volume fraction ¢.
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