Journal of Colloid and Interface Science 212, 449-452 (1999)

®
Article ID jcis.1998.6059, available online at http://www.idealibrary.com onl ﬂ E %l

Colloid Vibration Potential in a Concentrated Suspension
of Spherical Colloidal Particles

Hiroyuki Ohshima*"' and Andrei S. Dukhin?

*Faculty of Pharmaceutical Sciences and Institute of Colloid and Interface Science, Science University of Tokyo, 12 Ichigaya F unagawara-machi,
Shinjuku-ku, Tokyo 162-0826, Japan; and tDispersion Technology Inc., 3 Hillside Avenue, Mount Kisco, New York 10549

Received October 1, 1998; accepted December 17, 1998

A relation between the dynamic electrophoretic mobility of
spherical colloidal particles in a concentrated suspension and the
colloid vibration potential (CVP) generated in the suspension by a
sound wave is obtained from the analogy with the corresponding
Onsager relation between electrophoretic mobility and sedimenta-
tion potential in concentrated suspensions previously derived on
the basis of Kuwabara’s cell model. The obtained expression for
CVP is applicable to the case where the particle zeta potential is
low, the particle relative permittivity is very small, and the over-
lapping of the electrical double layers of adjacent particles is
negligible. It is found that CVP shows much stronger dependence
on the particle volume fraction ¢ than predicted from the ¢
dependence of the dynamic electrophoretic mobility. It is also
suggested that the same relation holds between the electrokinetic
sonic amplitude of a concentrated suspension of spherical colloidal
particles and the dynamic electrophoretic mobility. © 1999 Academic
Press
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1. INTRODUCTION

When a suspension of charged colloidal particles is irradi-
ated with a sound wave, a macroscopic electric field is gener-
ated in the suspension. This field is called the colloid vibration
potential (CVP). The mechanism of the generation of CVP is
essentially the same as that for the sedimentation potential in a
suspension of charged colloidal particles in a gravitational field
(see, e.g., Ref. (1)). For a dilute suspension it has been shown
by Enderby (2) that the CVP in a suspension of spherical
colloidal particles in an applied sonic field of frequency w is
related to the dynamic electrophoretic mobility w, of the
particle by

_ Qb(Pp - pO)

CVP =
poK

woVp, (1]

where Vp is the pressure gradient due to the sound wave, ¢ is
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the particle volume fraction, p, is the mass density of the
particle, p, is the mass density of the electrolyte solution, and
K” is the electrical conductivity of the electrolyte solution in
the absence of the particles. An approximate expression for the
dynamic mobility of a spherical particle of radius a has been
derived by O’Brien (3), which is, for the case where ka >> 1
(where « is the Debye—Hiickel parameter) and the dynamic
relaxation effect is neglected,

B eeol 1 —ivya
Ho= " H@) - T [2]
with
N A i
=\ =@{+1) 3 [3]
2(7ya)*(p, — po)
e, I" - o
9, , (4]
2
H(a)=1—iya — (V;Z) , [5]

where &, is the relative permittivity of the solution, &, is the
permittivity of a vacuum, 7 is the viscosity, and { is the zeta
potential of the particle.

Equation [1], which is correct to the first order of ¢, is
applicable only for dilute suspensions. The purpose of the
present paper is to generalize Eq. [1] to cover the case of
concentrated suspensions on the basis of Kuwabara’s cell
model (4).

2. KUWABARA’S CELL MODEL

For concentrated suspensions, the hydrodynamic and elec-
trostatic interactions between the particles must be taken into
account. One useful and simple method is to employ Ku-
wabara’s cell model (4) (see Fig. 1 of the preceding article on
p. 444). This model assumes that each sphere of radius a is
surrounded by a concentric spherical shell of an electrolyte
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solution having an outer radius of b such that the particle/cell
volume ratio in the unit cell is equal to the particle volume
fraction ¢ throughout the entire suspension, viz.,

¢ = (alb)’ (6]

and that the fluid vorticity is zero at the outer surface of the unit
cell. Levine and Neale (5) proposed a theory of the static
electrophoretic mobility of spherical particles in concentrated
suspensions on the basis of Kuwabara’s cell model and dem-
onstrated that in the limit of ka — % Kuwabara’s cell model
correctly gives Smoluchowski’s mobility formula,

Srsog
mn

M [7]

Also Ohshima (6) showed that the electrical conductivity K* of
a concentrated suspension of spherical particles calculated on
the basis of Kuwabara’s cell model has the correct behaviors in
the following two limiting cases: { = O (uncharged particles)
and ka — o (infinitesimally thin electrical double layers
around the particles). That is, Kuwabara’s cell model yields
Maxwell’s formula (7) in these limiting cases,

K 1—-¢

K1+ ¢/ (£=0) [8]
and

K*  1-¢

K14 g2 (ka ) ©)

where K is the conductivity of the electrolyte solution in the
absence of the particles. These correct behaviors exhibited by
Kuwabara’s cell model imply that this model is a good approx-
imation for concentrated suspensions. Also note that Ku-
wabara’s cell model assumes a uniform three-dimensional dis-
tribution of particles. As shown by Kang and Sangani (8),
however, the exact particle distribution plays a minor role
unless the double layers around the particles are very thick.

3. ANALOGY BETWEEN CVP AND
SEDIMENTATION POTENTIAL

Equation [1] is similar to the following well-known relation
between the sedimentation potential E., in a dilute suspension
of colloidal particles and the static electrophoretic mobility w
of the particle, viz.

¢(pp, — po)

K= M8 (10]

Egep =
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where g is the gravity. This relation was originally derived by
de Groot et al. (9) on the basis of irreversible thermodynamics
and later a direct proof of Eq. [10] was given by Ohshima et al.
(10). The similarity between Egs. [1] and [10], which are both
Onsager’s reciprocal relations, results from the analogy be-
tween sedimentation potential in a gravitational field and col-
loid vibration potential in a sonic field. In the limit of large ka,
the static mobility w is given by Smoluchowski’s formula [7].

4. SEDIMENTATION POTENTIAL IN
CONCENTRATED SUSPENSIONS

Levine et al. (11) employed Kuwabara’s cell model to derive
the following expression for the sedimentation potential E, in
a concentrated suspension of spherical particles of radius a
with zeta potential £, which is correct to the first order of ¢,

_ 8r80§ d)(pp - pO) ’Y(Kay d))
n K*® Qe ®

(11]

Egep =

where ((¢) is defined by

Q) =1+ ¢ —9¢'"I5 - ¢p¥5)7! [12]
and y(ka, ¢) is a very complicated function and given in Ref.
(11). Equation [11] is applicable for low zeta potentials and
nonoverlapping of electrical double layers of adjacent parti-
cles. Recently Ohshima (12) has found that y(ka, ¢) can be
simply expressed in terms of the static electrophoretic mobility
m(ka, @) in concentrated suspensions as

@

(1 = $)Q(9) p(ka, ¢)
(1 + ¢/2)  (e&0¢/m)

Y(ka, ¢) = [13]

and thus Eq. [11] can be rewritten as

(1+¢/2) K~

p(ka, d)g.  [14]

Egep =

Here u(ka, ¢) is the static electrophoretic mobility of spher-
ical colloidal particles of radius a in a concentrated suspension
derived by Levine and Neale (5) on the basis of Kuwabara’s
cell model and a simple accurate approximate expression for
w(ka, ¢) has recently been obtained by Ohshima (13).

5. CYP IN CONCENTRATED SUSPENSIONS

By analogy between the sedimentation potential and CVP,
the following formula for the CVP in a concentrated suspen-
sion of spherical colloidal particles of radius a with zeta
potential { immediately results:



CVP IN CONCENTRATED SUSPENSIONS

B 2(1 + ¢/2)(ka)?
P9 (1 - )P

P = cosh[k(b — a)] — —Kll—; sinh[ k(b — a)],

1 — kb -tanh[x(b — a)]
~ tanh[k(b — a)] — kb °

(14 iyb)e ™7 + (1 = iyb)e™?
(1 +iyb)e PO — (1 — iyb)eta)”

2.5

8= 1+ 2 exp(—«ka)’
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FIG. 1. Magnitude of the dynamic electrophoretic mobility wp(ka, ¢)
and ph(ka, ¢), both scaled by p, (where p, = g.&,{/1 is Smoluchowski’s
mobility) as a function of the particle volume fraction ¢ for several values of
poa’w/n(=1y’la®) at (py — Po)lpo = 0.1 and ka = 10. Solid lines represent
lwo(ka, ¢)l/u, and dotted lines luh(ka, ¢)l/u..

¢(1 — &) (p, — po)
(14 ¢/2) poK”

CVP = molka, $)Vp.  [15]

Here wp(ka, ¢) is the dynamic electrophoretic mobility of
spherical colloidal particles of radius a with zeta potential { in

concentrated suspensions. Ohshima (14, 15) has derived the

following accurate expression for up(ka, ¢):

81'80{
olce 8 = 3lh(a) ~ T

2 1
<[5 11+ a5 o

where
H(a) + iya(l — R)
M@ = g+ By 10 — iyak) )
. - 1 [ (ka)?
’-l—d) '"3(1)2/313
v2(1 + kaQ) + «*(1 — iyaR) ]
T~ ¢+ Bél(ya) N1 — ivaR)} ]’

(18]

where vy, I', and H(a) are defined by Egs. [3]-[5], and b =
a¢ ™" (Eq. [6)). Equation [15] is applicable when the zeta
potential is low, the particle permittivity is very small, and the
overlapping of the double layers of adjacent particles is neg-
ligible. Note also that in the approximation of nonoverlapping
double layers S,(ka, ¢) in Eq. [16] can be ignored. In the limit
of ka — o, in particular, Eq. [16] reduces to

8,80(

up(®, ¢) = = ¢)

« 1 — iyaR
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FIG. 2. Same as Fig. 1 but for ka = .
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which further reduces to O’Brien’s mobility formula [2] as
¢ —0.

Equation [15], which is the required expression for the CVP
in concentrated suspensions, is the generalization of Eq. [1] to
cover the case of concentrated suspensions.

6. RESULTS AND DISCUSSION

We have derived Eq. [15] for the CVP in concentrated
suspensions of spherical colloidal particles on the basis of the
observation that Onsager’s relation between CVP and dynamic
electrophoresis is the same as that between sedimentation
potential and static electrophoresis. It must be stressed that
Onsager’s relations for concentrated suspensions (Egs. [14]
and [15]) differ from those for dilute suspensions (Egs. [1] and
[10]) in that Eqs. [14] and [15] have a factor (1 — O + p/2).
It is interesting to note that this factor coincides with the
electrical conductivity ratio K*/K” given by Maxwell’s rela-
tion (Eqgs. [8] and [9]). Due to the presence of the factor (1 —
$)/(1 + ¢/2), the CVP depends more strongly on ¢ than
predicted from the ¢ dependence of wp(ka, ¢). In order to see
this more clearly, we introduce

1 —_
’J’E(Ka’ d)) = TT& I'LD(Ka’ ¢)v [25]
which is related to CVP by
_ 91 = ¢) (p, = po)
CVP_ (1 T ¢/2) pOKco /‘LD(K‘I’ (i’)vp
= po)
= ¢ %K—p" wh(xa, $)Vp. [26]

We compare the magnitudes of pup(ka, ¢) and wi(ka, ¢) for
ka = 10 and = in Figs. 1 and 2, where calculation was made
with the help of Egs. [16] (ka = 10) and [24] (ka = ) for
several values of poa’w/n(=1y’la’) at (p, — po)/p, = 0.1. We
see that |u$(ka, ¢)l shows much stronger dependence on ¢
than lup(ka, ¢)I. That is, CVP exhibits much stronger depen-
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dence on ¢ than predicted from the ¢ dependence of the
dynamic electrophoretic mobility wp(ka, ¢).

The results obtained in this paper can also be applied to other
electroacoustic phenomena. When an oscillating electric field
E exp(—iwt) is applied to a suspension of charged spherical
colloidal particles, a macroscopic sound wave is generated in
the suspension. O’Brien (3) showed that Onsager’s reciprocal
relation holds between the oscillating electric field generated
by a sound wave and the sound wave generated by an oscil-
lating electric field. It is thus suggested that the amplitude of
this sound wave, which is called electrokinetic sonic amplitude
(ESA), can be expressed as

1 —
ESA =B ((11)—(4_% (P, = pPo)up(ka, ¢b)E

= Bd(p, — po)ub(ka, $)E, [27]

where B is the instrument factor and E = |EJ.
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