' Langmuir 1996, 12, 4987—-4997 4987

Acoustic Spectroscopy for Concentrated Polydisperse
Colloids with High Density Contrast
Andrei S. Dukhin* and Philip J. Goetz
Pen Kem, Inc., 341 Adams Street, Bedford Hills, New York 10507
Received November 29, 1995. In Final Form.: May 15, 19963

new theory for the volume fraction up to 30%.

cases.

Introduction

Loss Mechanisms. There are six known loss mech-
i anisms for the interaction of sound with a dispersed
. system: (1)viscous; (2) thermal; (3) scattering; (4) intrinsic;
(5) structural; and (6) electrokinetic.

The viscous losses of the acoustic energy occur due to
;. the shear wave generated by the particle oscillating in
. the acoustic pressure field. These shear waves appear
because of the difference in the densities of the particles
andthemedium. This density contrast causesthe particle
motion with respect to the medium. As aresult the liquid
layers in the particle vicinity slide relative to each other.
This sliding nonstationary motion of the liquid near the
particle is referred to as “shear wave”.

: The reason for the thermal losses is the temperature -
. ‘gradients %:nerated near the particle surface. These

- temperature gradients appear due to the thermodynamic
coupling between pressure and temperature. :
~ Themechanism of the scattering losses is quite different
compared to those of the viscous and thermal losses.
Acoustic scattering does not produce the dissipation of
the acoustic energy. It is similar to the light scattering.
Particles simply redirect the part of the acoustic energy
flow. Asaresult the portion of the sound energy does not
reach the sound transducer.

‘The intrinsic losses of the acoustic energy occur due to
the interaction of the sound wave with the materials of
the particles and medium as homogeneous phases.

The oscillation of the network of the interparticle links
in the structured dispersed system causes structural
losses. Thus, this mechanism is specific for the structured
systems. i

Oscillation of the charge particles in the acoustic field
leads to the generation of the alternating electrical field
and, consequently, alternating electric current. As aresult
a part of the acoustic energy transforms to electric energy
and then irreversibly to heat.

Only the first four mechanisms (viscous, thermal,
scattering, and intrinsic) make a significant contribution
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The acoustic attenuation spectra for rutile dispersions show a pronounced nonlinear increase in attenuation
over a volume fraction range from 1% to 42%. A theory is developed to explain this nonlinear effect. This
theory takes into account hydrodynamic particle—particle interactions caused by a sound wave. The
modification of the acoustic theory has been accomplished using a “cell model” and a “coupled phase
theory”. The notion ofa “cell” allows us to take into account the hydrodynamicinteraction between particles
when calculating a drag coefficient. Furthermore, th
concept to include the effects of polydispersity, introducing only one more adjustable parameter. This
parameter determines the relationship between the cell and the particle radii. The “coupled phase theory”,
generalized here for-a polydisperse structured system, relates this drag coefficient to both the attenuation
and sound speed spectra. Experimental verification of the modified theory is presented. The rutile samples
were well dispersed. The measured attenuation agrees quite well with the attenuation predicted by the
However, in the most highly concentrated slurries it was '
necessary to postulate some degree of aggregation in order to reconcile the measured and predicted spectra.
The modified theory provides a means to calculate reasonable bimodal particle size distributions in these

€ mass conservation law helps to expand this “cell”

to the overall attenuation spectra in most cases.! Struc-
tural losses are significant only in structured systems
‘which require a quite different theoretical -framework.
For the present, there is no theory for describing these
structural losses. Finally, the contribution of electroki-
neticlosses to the total sound attenuation is almost always
negligibly small? and will be neglected. i

Existing Theory and Limitations. The theory for
these four most important mechanisms (viscous, thermal,
scattering, and intrinsic) has already been developed by
Epstein and Carhart,? as well as Allegra and Hawley,!
but only for the “monodisperse spherical dilute case”. We
will refer to this special case theory as the ECAH theory.

The term “monodisperse” is normally used to suggest
that all of the particles are assumed to have the'same
diameter. Extensions of the ECAH theory to include
polydispersity have typically assumed a simple linear
superposition of the attenuation for each size fractioén. In
the present analysis we don’t use the superposition
assumption. At the same time we provide a framework
for including not only polydispersity in the particle size
but also polydispersity in other physical properties such
as density. This provides the necessary framework to
handle practical systems, e.g. mixtures of alumina and’
zirconia in a ceramic slurry. ,

The term “spherical” is used to denote that all calcula-
tions are performed assuming that each particle can be
adequately represented as a sphere. We use the same
model for the particles.

Most importantly, the term “dilute” is used to admit
that there is no consideration of particle—particle interac-
tions. This fundamentallimitation normally restricts the
application of the resultant theory to dispersions with a
volume fraction of less than a few volume percent.
However, there is some evidence that the ECAH theory,
in some very specific situations, does nevertheless provide

(1) Allegra, J.R.; Hawley, S. A. Attenuation of Sound in Suspensions
and Emulsions: Theory and Experiments. JJ. Acoust. Soc. Am. 1972,
51, 1545—1564.

(2) Strout, T. A. Attenuation of Sound in High-Concentration
Suspensions: Development and Application of an Oscillatory Cell Model.
Thesis, The University of Maine, 1991.

(3) Epstein, P. S.; Carhart, R. R. The Absorption of Sound in
Suspensions and Emulsions. J. Acoust. Soc. Am. 1953, 25 (3),553—-565.
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a correct interpretation of experimental data, even for
volume fractions as large as 30%. .

An early demonstration of the ability of the dilute ECAH
theory to-describe some concentrates was in fact provided

by Allegra and Hawley. They observed almost perfect
correlation between experiment and dilute case ECAH

theory for several systems: a 20 vol % toluene emulsion;

210 vol % hexadecane emulsion; and a 10 vol % polystyrene
latex. Similar work with emulsions by McClements* has
provided similar results. The recent work by Holmes,
Challis, and Wedlock?? shows the good agreement between
ECAH theory and experiment even for 30 vol % polystyrene
latices. However, it is important to note that the surpris-
ing validity of the dilute ECAH theory for moderately
concentrated systems has only been demonstrated in
systems where the “thermal losses” were dominant. We
shall return to this pointin a future paper (following paper
in this issue).

Despite the limited success of the ECAH theory with
emulsions and latices, the validity of the ECAH theory for
moderately concentrated systems is still very much in
doubt for systems in which; by contrast, the “viscous losses”
are dominant. McClements*®states that it is quite clear
that particle—particle interactions must be included in
any theory which purports to address concentrated
industrial systems. An appropriate modified theory can
then provide a unique basis for particle characterization
at high volume fractions, where no other technique is'so
far available. ’

Hydrodynamic and Thermodynamic Fields. To
set the stage, it should first be noted that particles interact.
with each other through both “hydrodynamic” and “ther-
modynamic” fields. The particles generate thesefieldsin
their immediate vicinity in response to the sound wave-
as it propagates through the dispersed system. ‘Fortu-
nately, it is possible to consider these hydrodynamic and

thermodynamic interactions quite 'separately, which:

greatly simplifies the theoretical discussion. -

In essence, the hydrodynamic field is responsibie,ﬁ‘fbr '

the viscous loss whereas the thermodynamic field provides
the thermal loss. In many cases, one mechanism is
negligibly weak compared to the other. For inst

viscous losses are typically dominant for dispersions Wlth ‘

a high density contrast (Ap/p > 1), such as oxides-and
‘pigments. Ontheother hand, thermallosses predominate
in systems with alow density contrast and perhaps flexible
particles, such as emulsions and latices. A “critical
frequency” for a particular loss mechanism is typically.
defined as that frequency where the loss is greatest. It is
_important to note that the critical frequencies for the
viscous and thermal losses are often quite remote from
one another, a factor which permits us to consider theses
effects separately, since one loss mechanism then reaches:
a maximum at a frequency where the’other loss is
negligibly weak.

This paper will deal only with the hydrodynamic
particle—particle interaction, and for this discussion we
will neglect particle—particle interactions as they relate
to the thermodynamic fields. As a result this paper is
targeted primarily at medium and high density contrast
systems where the viscous losses are dominant-and the
thermal losses play only a supporting role. The question
of the particle—particle interactions with respect to the
thermodynamic fields will be addressed in a subsequent

(4) McClerwx’h{er_’)ts, J.D. UItrasohigDetermination of Depletion Floc-
culation in Oil-in;Water Emulsions Containing a Non-Ionic Surfactant.
Aallnide Surf 1994, 90. 25—35.
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paper (following paper in this issue), which will address
emulsions-and latex materials.

It should be noted that the term “viscous loss” is

something of a misnomer, since, in fact, it relates not only
to pure “viscous” effects but also to “inertial” -effects
resulting from particle motion with respect to the liquid.
The viscous component is dominant at lower frequencies,
whereasa dissipative termassociated with inertia becomes
dominant at high frequencies.®” This “inertial” term
relates to the unsteady generation of vorticity in the
boundary layer near the particle and its diffusion away
from the particle surface.

Critical Frequency. According to the dilute ECAH

theory, the critical frequericy w. is independent of the
volume fraction. By definition, the critical frequency is
that frequency for which the attenuation coefficient,
expressed in dB/cm-MHz, reaches a maximum. Such a
dilute system can be characteriz
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The second goal in this paper ,
equency to-higher

Long-Wavelength Requirement. 'We would like to

keepthetheory as general as possiblé: Nevertheless, one
important simplification of the theory will be employed,
thie'so-called “long-wave requirement”? which requires
the wavelength: of the sound wave:4:to be:much larger
.than the particle radius. Usually the condition'A > 3a is
used. This “long-wave requirement”restricts the sound
frequency to be above some certain critical frequency wi

(6) Atkinson; C. M.; Kytomaa, H. K. Acoustic Wave Spéed and

Attenuation in Suspensions. Int. J. Multiphase Flow 1992,18,4,577—
592.

(7) Temkin, S.; Dobbins, R. A. Attenuation and Dispersion of Sound
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which is reciprocally proportional to the particle size
according to the equation

27V,
Wy, =

= (1.2)

‘where V} is the sound speed in the medium.

Comparing w,; with wy, we can conclude that we, <
for the particles with size greater than 10 nm. It means
that attenuation associated with the viscous losses is
significant for the frequencies much lower than wiw when
the particle size is more than 10 nm. Therefore, the long-
wave requirement is valid for the theory of the viscous
losses in the aqueous dispersions when the particle size
is greater than 10 nm.

Invoking this long-wave requirement also permits us
to simplify the analysis by considering viscous losses
independently of scattering losses. Scattering losses are
normally negligibly small compared to the viscous losses
when the long-wave restriction on the sound frequency is
valid, as illustrated in Appendix A.

Cell Model Approach. There are two approaches to
the description of a nonequilibrium phenomenon such as
sound propagation in a concentrated dispersed system.
The first approach is the statistical mechanics of the liquid
state. The statistical approach is widely used to study
particle—particle interactions in the light scattering and
rheological measurements.?

The second approach explores the idea of the “cell -

model”.%71! There are several reasons to prefer the cell
model approach for extending the theory of acoustic
spectroscopy. Forone, the cell model approach has already
been successfully applied to various other hydrodynamic
phenomena. For gnother, it is relatively simple to use.
But most importantly, the cell model approach gives us
the opportunity to introduce the important notion of
polydispersity to the system. . This unique ability to
accommodate polydispersity, in our judgment, more than
compensates for any lack of precision inherent in the cell
model approach to the problem.

The cell model approach is based on the idea of a “scale

G hierarchy”.!! Most commonly, there are three scales

employed in describing a colloid system: “microscopic”;
“cell”; dnd “macroscopic”,

The “microscopic” scale is obviously the smallest. At
this scale we introduce the intensive parameters and the
kinetic coefficients of the dispersion medium. The prop-
erties of the microscopically small elements of the medium
such as viscosity, density, temperature, pressure, the
chemical potentials of the dissolved components, etc. are
the general characteristics of the dispersion phase. The
dispersed phase is characterized in the same way, by the
same set of intensive “microscopic” parameters.

The “cell scale” is the midrange scale. The sizes of the
particulates determine the characteristic scale factor at
this level. A conventional spherical envelope of liquid
surrounding each particle can be considered a “cell”. The
condition that the volume fraction inside each cell is the
same as the total volume fraction of solid @ defines the

(8) Chen, M.; Russel, W. B. Characteristics of Flocculated Silica
Dispersions. J. Colloid Interface Sci. 1991, 141 (2), 564—577.

(9) Happel, J. Viscous Flow in Multiparticle Systems: 'Slow Motion
of Fluids Relative to Beds of Spherical Particles. AICHE J. 1958, 4,
197-201.

(10) Kuvabara, S. The Forces Experienced by Randomly Distributed
Parallel Circular Cylinders or Spheres in a Viscous Flow at Small
Reynolds Numbers. J. Phys. Soc. Jpn. 1959, 14, 527—532. ‘

(11) Shilov, V.:N.; Zharkih, N. I; Borkovskaya, Yu. B. Theory of
Nonequilibrium Electrosurface Phenomena in Concentrated Disperse
System. 1. Application ‘of Nonequilibrium Thermodynamics to Cell
Model. Colloid J. 1981;43(3), 434—438.
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amount of liquid associated with the particle. The “cell
model” has been used to date only for the monodisperse
case, and as we will see, this will be extended to cover
polydispersity. :

The “macroscopicscale”is the largest. The whole system
as an entity is the subject for characterization on this
scale. Inthe caseofa concentrated system, the experiment
can normally be performed only at the macroscopic level
because the observation of single particles usually requires
dilution. '

In this paper we speak of a cell hierarchy consisting of
only three levels. A structured system might require an
additional scale appropriately chosen to reflect this
structure. This added scale would fall somewhere between
the cell and macroscopic scales but is not discussed further
here and will be the subject of a future paper. At the
same time we will make the first step in describing the
“structurallosses” including the effect of the specifie forces
acting between particles. We assume that these forces
create a network of links between particles. However,
the particles retain their random space distribution. The
last assumption releases us from the necessity to use the
additional level of the cell hierarchy.

Acoustic spectroscopy involves all three levels of this
cell hierarchy in the characterization procedure.

Most “a priori information” about the system comes at
the microscopicscale. Such known microscopic properties
might include the viscosity, density, and sound speed
velocity of both the medium and particle.

Our desired information, in the form of some description
of the particle size or other properties, is at the cell level.

The experimental data, i.e. the sound attenuation a
and sound speed V, are derived on the macroscopic scale.

It is therefore necessary to formulate a link between

‘the macroscopic and cell scales in order to calculate a

particle size distribution (PSD) from the acoustic spectra.
The acoustic spectroscopy theory should give us this link.
Unfortunately, it provides this link for some assumed
model system rather than a real natural system.

-Model Assumptions. The replacement of the real
system with a convenient model can potentially cause
significant errors. It is possible that the model error
predominates over all other errors, including experimental
errors and errors inherent to the approximate math-
ematical calculations. Clearly, the model system should
reflect the properties of the real system as completely as
possible. However, it is sometimes impossible to achieve
this goal in a given model system. This means that there
are usually some restrictions on the applicability of a given
model system. So let us speak now of possible model
systems for both the media and the dispersed phase.

An “incompressible Newtonian liquid” is a common
model for the dispersion medium and will be employed
here. Similarly, a “spherical particle” is a common model
for the dispersed phase particles, and this choice is suitable
for many well dispersed stable systems.

Inclusion of the structural network of the colloid
particles is an additional important requirement to the
model because colloid structure contributes to the acoustic

. energy losses.

An appropriate “coupled phase” acoustic theory incor-
porating only “viscous losses” has been created for the
monodisperse concentrated system by Gibson and Tok-
soz.'? Tt is generalized in this paper for systems which
are polydisperse in terms of particle size, density, sound
speed, and internal structure.

(12) Gibson, R. L.; Toksoz, M. N. Viscous Attenuation of Acoustic
Waves in Suspensions. J. Acoust. Soc. Am. 1989, 85, 1925—1934.
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Figure 1. Cumulative particle size distribution on the weight
basis of the rutile R746 measured with Sedigraph and ap-
proximatedusing thelog—normal assumption. The median size
of the log—normal distribution is 0.33 um, and the standard
deviation is 0.2.

The main characteristic of the fractional viscous losses
isa drag coefficient Q of the particles of a given fraction.
The traditional nonstationary “cell model” is generalized
for the polydisperse system to calculate the drag coef-
ficient. The cell boundary conditions are used in the
Happel’s version.® The first successful attempt to apply
the “cell model” for calculation of the nonstationary drag
coefficient was performed in ref 2.

'The experimental confirmation of the expanded theory
is the third goal of this paper. It will be shown that the
expanded theory is able to explain the nonlinear volume

fraction effect in concentrated rutile dispersions and

provide:a reasonable particle size distribution.

Dilution Experiment with Concentrated Rutile
- Dispersion

Experimental Materials and Methods. The ‘starting
material was a concentrated aqueous rutile slurry obtained from
E.I.DuPont de Nemours. Itiscommercially referred to-asR746
and is normally supplied at a weight fraction of 76.5% (44.5% by
volume). The density of the particlesis 4.06 g/cu-cm. Itisslightly
less than that for the regular rutile because of the various surface
modificators used to stabilize the slurry. The sample was then
diluted to 0.83%, 2.92%, 4.95%, 9.81%, 17.47%, 24.71%, and
34.92% by volume using distilled water, adjusted to pH 8.5 with
potassium hydroxide.

* The particle size distribution (PSD) has been measured by Dr.
Beloga from E. I. DuPont using Sedigraph 5100. This measure-
ment has'been performed for the very dilute system with and
without - sonication. The sonication effect turns out to be
insignificant. The cumulative PSD is shown in Figure 1.The
measured cumulative curves are not completed because Sedi-
graph is not able to characterize a PSD below 0.2 um. Inter-
pretation of the acoustic experiment requires the entire particle
size distribution. Fortunately a log—normal distribution with
the mediansize 0.33 yum-and standard deviation 0.2 gives perfect
extrapolation of the Sedigraph ‘measured PSD. Figure 1 il-

lustrates this fact. Thus, we will use the above-mentionedlog—

normal distribution asthe PSD of the well dispersed stable dilute
rutile dispersion R746.

The attenuation spectra were measured.for the original
concentrate and each of the seven diluted samples using the Pen
Kem AcoustoPhor 8000. The atténuation was measured over a
frequency range from 1 to 100 MHz. Each measurement was
made three times and then repeated three times more after 24
h. The good reproducibility showed by this test indicated the
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Figure 2. Attenuation spectra for the rutile dispersions

(DuPont R746) with various volume fractions from 0.83 vol %
to 44.5 vol %.
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Figure 3. Dependence of the atténuation at the frequency 15
MHz on thé dispersed system weight fraction. Corresponding
volume fractions in percent are shown as the data point labels.

Some experimental points at low frequency (<2 MHz) and at
high frequency (>50 MHz when ¢ > 10%) are excluded because. .
ofthelargeerrors. (Those frequenciesliein the too close vicinities *
of the transducer piezocrystal harmonics.) B

The set of the attenuation spectra corresponding to a volume
fraction up to 25% shows that the critical frequency definitely
shifts to the higher frequencies. This confirms the qualitative
conclusion made earlier about the nonlinear volume fraction
effect.

The attenuation dependence on' volume fraction is shown in
Figure 3 at a single frequency of 15 MHz: It is seen that the
dependence is extremely nonlinear above a volume fraction of
10%. v

It is important to mention that E ""the'dry is not able to
explain the observed peculiarities of: tenuation spectra. If
we assume that this theory retains its validity at the higher
volume fractions, we must conclude th: b theincrease of the solid
concentration somehow leads: to g oftheinitial 0.33
um singlets and the creation of s aller: partlcles This possibility
seems quite unlikely. ; ‘

. Theresult of this experlment seems sufﬁc1ent justification for
attempting to create an expanded theory for concentrates
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the unknown “effective” pressure P* and the velocities of
the particles u, and the media uy:

. aup ‘
—@VP* = oy + y(u, — 1) (2.1)
. ou, o
~1 = @)VP* =1 = @log — r(u, —ug) (2.2)
aP* _
- ——=K*(1 - ¢)Vu, +'K*ngup (2.3)
where

2a®

K* is a stress modulus (the reciprocal of compressibility)
of the disperse system, ¢ is time, and # is the dynamic
viscosity of the medium.

The time and space dependence of the unknown field
variables P*, u,, and u, is presented as a monochromatic
wave Ae/@~%), where j is a complex unit and [ is a complex
wavenumber. The attenuation coefficient and sound speed
are related to the complex wavenumber by the followmg

expressions:

"

o = —~Im() 2.5)
V = w/Re(l) (2.6)

Substitution of the field variables as monochromatic
waves into the system of eqs 2.1—2.3 yields a system of
three algebraic equations for the monochromatic amph-
tudesA. This system has a nontrivial solution if the main
determinant equals zero, in which case one can calculate
the value of the complex wavenumber. The following
expression for 1 has been derived in ref 12:

4
PKR* o(1 - Q)ﬁ 5 o
o'e* @(1 — p)o* —jﬁ =0

where
0" = 0,0 + 04(1 — @) (2.8)
0" =009 T 0,(1 = @) (2.9

Expression 2.7 reflects only the influence of the viscous
. loss mechanism on the propagation of the sound through
a'monodisperse system. As a result, the coupled phase

theory created in the work!?is valid only for monodisperse .

particles in nonstructured systems.

It is possible to generalize this “coupled phase” theory
for a structured polydisperse system. The same idea of
the forces balance can be applied for the particles in each
size fraction of the polydisperse system independently.
The number of fractions N is conventional and unlimited.
The analog of the monodisperse system of eqs 2.1—-2.3
contains N + 2 equations for the polydisperse case. There
are'N equations for particles, 1 equation for the dispersion
medium, and 1 more for the disperse system as a whole.
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Structural Effects. Each balance forces equation
should be modified because the “specific” forces!!4 must
be taken into account as well as the hydrodynamic ones.
Specific forces act like springs connecting particles fol-
lowing the general transient-network theory created in
refs 15 and 16. The simplified version of this model allows
one to calculate the complex wave number.

Two terms are necessary to present adequately the
contribution of the non-Hookean. springs to the force
balance. The first term is a Hook’s force proportional to
the displacement of the particle with the coefficient 8.
The second term is a dissipative force proportional to the
particle velocity with the coefficient d;. The coefficients
B; and J; are; assumed to be the same for all particles of
the given ith fraction. This assumption is valid for a
regular structure when the environment of the particles
depends only on its size but not on its location. This
assumption is a logical first step in incorporating struc-
tural effects in the theory of sound propagation through
a polydisperse system.

The modified system of the N + 2 balance equations
can be presented as follows:

WP = g2 ( Z ) b+ 022
PV = w0 g Tl Bty + 0%
(2.10)
du, (-ax; )
—(1 - @)VP* = 1= @log—= | — ~ 2| 21D
®J)og o 27 o 0
9P* N Bx;
——=K*1 - @)Vu, + Y K*¢,v— (2.12)
ot i=1 ot

where eq 2.101is equivalent to N equations because i varies
from 1 to N. :

There are N + 2 unknown field variables in the system
(eqs 2.10—2.12): P*, u,, and x;'. The presentation of the
field variables in the monochromatic wave form allows
one to exclude time and space derivatives. The system of
the equations for the unknown amplitudes is

= Yyt ﬁix; -+ 6iij;
(2.13)

@JIP* = —q:iQ;a)Zx; + yiij;

!

N
(1 = @YlP* = (1 — plogwu, — Zyi(ij; —uy (2.14)
i=1

N
JoP* = K*(1 — @)jluy — » K*gwlxl  (2.15)
._1 p

where the symbols defining amplitude are the same as
before in the system (eqs 2.10—2.12) for the corresponding
field variables.

The same condition of the nontrivial solution existence

. leads to the equation for the complex wavenumber. This

(13) Derjaguin, B. V. Theory of Stability of Colloids and Thin Films.
Consultants Bureau, New York, 1989.

(14) Overbeek, J. Th. G. Recent Developments in the Understanding
of Colloid Stability. J. Colloid Interface Sci. 1977, 58, 408—422:

(15) Macosko, W. C. Rheology: Principles, Measurements and
Applications; VCH: New York, 1992.

(16) Kamphuis, H.; Jongschaap,R J.d.; Mijnlieff, P. F. ATransient-:

Network Model Descnbmg the Rheolog‘mal Behaviour of Concentratedf o

Dispersions. Rheol. Acta 1984, 23, 329—344.
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‘Table 1
Pyl Y1 @1pptw? = joyr — f1 — jwds 0 0
i I i i i
onil N 0 B pnpw? — joyn — By — jwdn
J1 - @) —Zy; — (1 —@)jwpo Joy: JwYyi JOYN
Jo —K*(1 — @)l K*olp, K*wlg; K*olpy

condition requires the main determinant to be equal to
Zero:

Det(l)=0 (2.16)
where Det is the determinant of the N + 2 order shown
in Table 1. .

The order of the determinant can be reduced to 2 using
the method of mathematical induction and the standard
procedure of lowering the determinant order.!” Asaresult
Det equals

N.

@

1-9¢)+ 2——
,'=1D

N yi(Den; — joy,)

—Ja)[go(l - @)+ Z

i=1 Jow Den;
Jjo N jog; N jogy;
Y (=g
ZQK* i=1Deni Den
where
Den; = _w29;‘7’i + joy; +jwd; + B;

This simplification allows us to solve eq 2.16 with respect
tothe complex wavenumber/. The result isthe following:

I’K*
o
N y(Den; — jwy;)
(— oo +
X ; JwDen;
Y oy o’} 1 oo 4+ zwDen —Joy)
1-¢+ - e
? i=1 Den = 1 en; % i=1 Jw Deni

(2.17)

Advantages of the Extended Coupled Phase
Theory. Expression 2.17 is much more general than the
original “coupled phase theory”. First ofall, it is valid for
the polydisperse system whereas expression 2.7 fits only
the monodisperse case. This is very important, since
, practical systems might be polydisperse not only in size
but also in density or other physical properties. The more
general theory allows us to treat systems with mixed
dispersed phases containing particles of different chemical
nature and different internal structure.

The ability to handle agglomeration effects is the second-
advantage of the more general theory. It allows us to
calculate o and V of a flocculated system when the
structural scale islarger than the wavelength butis much
shorterthan the system dimensions. The effective volume
fraction in this case @.ris higher than the volume fraction
of solid ¢ because particles are being concentrated into
the floccules by the spec1ﬁc forces. This effect of the
particle concentration is the additional showing up of the
structure.

The special “volume correction coefficient” o

P (2.18)

characterizes the relative importance of this effect.
Acoustic energy dissipates predominantly inside the
floccules wheregs expression 2.17 gives the attenuation
coefficient with respect to the total volume of the system.
Expression 2.17 becomes much simpler in the case of
nonstructured systems. The coefficients 8 and 6 equal
zero in this case. Assuming also the same density for all
particles, expression 2.17 can be transformed to

oi=1 9o,
-—0,
I’K* dsi0,
—= ~ (2.19)
W %k * § (p
© 1+(Q——2)2—f
p =1 9o,
4sfgp '

Application of this extended version of the “coupled
phase theory” requires an expression for the drag coef-
ficient of the particles in the concentrated polydisperse
system. The concept of “cell model” allows us to'solve this
problem. The generalization of the “cell model” for the
pelydisperse system is the necessary first step.

Cell Model for Polydisperse System

The main idea of the “cell model” is that each particle
inthe concentrated system is considered separately inside
a spherical cell of liquid associated only with a given
individual particle. The cell boundary conditions formu-
lated on'the outer boundary of the cell reflect the part1cle—
particle interaction.

In the past, the cell model has been applied only to
monodisperse systems. This restriction allows one to
define the radius of the cell. Equating the solid volume
fraction of the each cell to'the volume fraction of the entire
system yields the following expression for the cell radius

_a
b_'gﬁ

In the case of a polydisperse system, the introduction
of the cell is more complicated because the liquid can be
distributed between fractions in an infinite number of
ways. However, the condition of mass conservation is
still necessary.

Each fraction can be characterized by particle radii a;,
cell radii b;, the thickness of the liquid shell in the spherical
cell A; = b; — a;, and the volume fraction ¢;. The mass
conservation law relates these parameters together as
follows:

(3.1).
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Expression 3.2 might be considered as an equation with
N unknown parameters 4;. An additional assumption is
still necessary to determine the cell properties for the
polydisperse system. This additional assumption should
define the relationship between particle radii and shell
thickness for each fraction. We suggest the following
simple relationship:

h; = ha! - (3.3)

This. assumption reduces the number of unknown

- parameters to only two which are related by the following
expression:

N
DM +ha P =1 (34
i=1

Itis convenient to calculate the values of & for the various
values-of n. The parameter n will be referred to as a
“shell factor”. Two specific values of the shell factor
correspond to easily understood cases. A shell factor of
0 depicts the case in which the thickness of the liquid
layer is independent of the particle size. A shell factor of
1 corresponds to the normal “superposition assumption”,
which gives the same relationship between particles and
cell radii in the monodisperse case; i.e., each particle is
surrounded by a liquid shell which provides each particle
the same volume concentration as the volume concentra-
tion of the overall system. In general, the “shell factor”
is considered an adjustable parameter because it adjusts
the dissipation of energy within the cells.

Nonstationary Cell Model

The hydrodynamics of an incompressible liquid allows
us to calculate the drag coefficient of the particle provided
the “long-wave requirement” is valid. The drag coefficient
Q relates the hydrodynamic force exerted on the particle

-Fy, to the particle velocity Up:

Fy = 6anawu, (4.1)

. The hydrodynamic field u and pressure field P around
- the particlé moving with the velocity u, are necessary to
: calculate the hydrodynamic F,. Again noting that we
- assume the long-wave requirement is valid, the following
& ‘traditional set of the hydrodynamic equations allows us
+- to calculate these fields:

_QO% =1 rot rot u + grad P (4.2)

divu=0 (4.3)

- This system of equations requires the boundary condi-
“stions for both the radial ur and tangential u, components
of the liquid velocity at the surface of the particle,

(4.4)

u(r=a)=u,

u(r=a) = —u, (4.5)
as well as the velocity components on the outer surface

of the cell,

. Ug
1o, F7
H,B(r=b) =n ; 5—9— +r ? =0 (46)

u(r=b)=0 (4.7
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The boundary condition on the cell surface (eq 4.6)
corresponds to Happel’s version of the cell model %18

The general solution of this nonstationary hydrody-
namic problem is given by the following expressions:

3 3
u(r) = 0(1 - f—s) + %frb(l - %)h(x) dx (4.8
uy(r) = —C(l + 6—3) -2 /. "(1 + x—a)h(x) dr (4.9
2r3)  3Jr 2r®
where
h(x) = Chy(x) + Coh,(x) (4.10)
e—x(1+j) ‘
hy(x) = =——(—x + j(1 + x)) (4.11)
X
ex(1+j)
ho(x) = =——(x + j(1 — x)) (4.12)
X

The boundary conditions allow us to calculate three
unknown constants C, C;, and Cy: :

c=-2cn,®) - 2eyhb) (4.13)
oI
hyb) = =2
C, = " Den (4.14)
21
* hl(b) - _bl_3
CZ == T (4.15)

where

o1, oI,
Den = Il(hz(b) - —b—) - 12(}11(6) - T) +
hy(B)y5 — koD, (4.16)

—x(1+))
.e
I =—j X
-ex(1+j)
I,=—j x
—x(1+))
I;=-— . (1.5(1 + x) + j(x* + 1.5x))
x(1+7)

Iy =— %(1,5(—1 + %) +j(—2® + 1.5x))

Expressions 4.8—4.16 determine the hydrodynamic field
around the oscillating particle. The hydrodynamic force

(18) Happel, J.; Brenner, H. Low Reynolds Number Hydrodynamics;
Martinus Nijhoff Publishers: Dordrecht, The Netherlands, 1973.

(19) Press, W. H.; Teukolsky, S. A ; Vetterling, W. T.; Flannery, B.
P. Numerical Recipes in C, 2nd ed.; Cambridge University Press: New
York, 1992.

(20) Phillips, D. L. A Technique for the Numerical Solution of Certain
Integral Equations of the First Kind. J. Assoc. Comput. Mach. 1962,
9 (1), 84-97.

(21) Twomey, S. On the Numerical Solution of Fredholm Integral
Equation of the First Kind by the Inversion of the Linear System
Produced by Quadrature. J. Assoc. Comput. Mach. 1963, 10(1), 97—
101.
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Figure 4. Attenuation spectra for two monodisperse systems
with particle diameters 1 and 0.5 ym. The volume fraction is

20%.

exerted on the particle can then be calculated as a surface
integral of the stress tensor:!®

2na3v277Qw[( dh(r)
3 I dr

F,=-

> a + h(r)) + 2Jsu9]|,=a

(4.17)

where

_avw
Vov

Substitution of eq 4.17 into eq 4.1 gives the following
expression for the-desired drag coefficient:
o ( dh, R ) ( dh, ) 4
_ s 1 1 2| 4
) =2 g+ = —2 -
Q 3[01( dr s/ Cy et

This expression contains both'dissipative terms: viscous
and inertial:

Expression 4.18 allows us to calculate the fractional
drag coefficients in the general equation for the complex
wavenumber (eq 2.17). The radius of the cell & can be
calculated according to the algorithm suggested in the
previous section. Therefore, expression 4.18 makes this
version of the theory of the viscous and structural losses
complete.

Dependence of the Attenuation and Sound Speed
Spectra on the Distribution of the Particle Size
and Volume Fraction

The graphs presented in Figures 4—8 illustrate the
dependencies of the attenuation on the various disperse
system parameters. All spectra correspond to the non-
structured system (i.e. 8 = 0; 0 = 0). ‘All spectra reflect
only the viscous loss contributions to the attenuation over
the frequency range from 1 to 100 MHz. The pertinent
properties of particles in all size fractions and of the media
are shown in Table 2.

Attenuation is.in dB/cm*Mhz in all figures.

Dependence on Mean Size for Monodisperse
Sample. Figure 4 illustrates the dependence of the
attenuation spectra on the particle diameter for a mono-
Aiameree avatem havine a volume fraction of 20%.

Dukhin and Goetz
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Figure 5. ‘Attenuation spectra for two mon0d1sperse systems
with volume fractions 1%, 15%, and 40% The particle diameter
is 0.5 um.
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Figure 6. Attenuation spectra for polydisperse systems with
different widths of the log—normal PSD. The standard devia-
tions are 1%, 10%, and 25%. The particle diameter is 0.5 um,
and the volume fraction is 15%.
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" Figure 7. Attenuation spectra for polydisperse systems with

log—normal and bimodal PSDs. The mean diameter is 0.5 um,
the standard deviation is 40%, and the volume fraction is 15%
for both distributions. The ratio of the mode mean sizes for the
bimodal distribution is 5.8.
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Figure 8. Log—normal and bimodal PSDs in the systems with

diameter 0.5 um and standard deviation 40%. The ratio of the
mode mean sizes for the bimodal distribution is 5.8.

Table 2. Properties of the Sample Used in the
Ilustrative Figures 4—8

parameter particle media
density, g/cc 3 1
sound speed, m/s 6000 1500
dynamic viscosity, cP 1

frequency. For verylarge particles the critical frequency .

may be lower. As aresult, at higher volume fractions the
larger particles can be characterized with acousti¢ spec-
troscopy. :

Dependence on Size Polydispersity. Figure 6 shows
the dependencies of the attenuation spectra on the width
of the particle size distribution for the system with the
mean diameter 0.5 um and the volume fraction 15%. The
particle diameter distribution is log—normal. Anincrease
of the standard deviation makes the attenuation spectra
flatter and moves them to higher frequencies.

Dependence‘on Shape of the Particle Size Dis-
tribution. Figures 7 and 8 illustrate the dependence of
the attenuation: spectrum on the shape of the particle
diameter \distribution. The corresponding PSDs are
presented in Figure 8. One is log—normal; the other one
isbimodal. Each mode of the second one is a log—normal
distribution. The mean diameter and total standard
deviation are the same for both spectra. The mean size
is 0.5 um, the total standard deviation is 40%, and the
volume fraction:is 15%. The ratio of the mode sizes for
the bimodal distribution is 5.8. The change in the shape
ofthe distribution causes a significant change in the shape
of the attenuation spectra. It is the illustration of the
acoustic spectroscopy capability to characterize the ag-
gregation phenomena.

Interpretation of the Dilution Experiment
Performed with Rutile Dispersion

The sound attenuation measured for the rutile disper-
sion (Figure 2) is caused by viscous losses. Scattering

- losses are not significant because of the small particle

size, as is shown in Appendix A. Thermal losses of the
rutile are also negligibly small in the given frequency range
from 1 to 100 MHz. Thus, the experimental attenuation
presented in Figure 2 can be used as a test for the created
theory. The given rutile dispersion is convenient for

" performing the theory test because all the input param-

% eters required for viscous loss calculations are known.

The set input parameters includes the particle size
stribution, the density, and the sound speed of the
dispersed phase and the dispersion medium weight
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Figure 9. Experimental and theoretical attenuation spectra
for the low and moderate volume fractions indicated in the
legend. The PSD is the log—normal shown in Figure 1.
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Figure 10. Experimental and theoretical attenuation spectra
for the high volume fractions indicated in the legend. The PSD
is the log—normal shown in Figure 1.

Figyres 9 and 10 illustrate the relationship between
calculated attenuation and experiment for the low and

“moderate volume fractions (Figure 9) and high volume

fraction (Figure 10). Itisseen thatthe correlation between
theory and experiment is very good up-to volume fraction
30%.

There are some deviations between calculated and
measured attenuation for the two most concentrated
samples with volume fraction above 30%. We think that
these deviations reflect the change in the particle size
distribution caused by the aggregation phenomena in the
concentrated samples. The log—normal distribution
measured with Sedigraph for the dilute system and shown
in Figure 1 is not adequate for the high concentration
samples. Itisreasonabletoassume thatthe particle builds
aggregates, which leads to the change of the PSD. The
particle size distribution becomes bimodal.

The bimodal hypothesis allows us to fit experimental
attenuation curves, as is shown in Figure 11 for the most
concentrated sample. The corresponding bimodal PSD is
shown in Figure 12.

It is important to mention that the hypothesis of the

" bimodal PSD does not help ECAH theory. The assumption

of aggregate formation shifts ECAH theory attenuation
curves to lower frequencies whereas experiment shows a
shift to higher frequencies. Thus, the hypothesis of a
bimodal PSD works only in combination with hydrody-
namic particle—particle interactions.

Conclusions

The dilution experiment performed with the rutile
dispersion shows a strong nonlinear dependence of the
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Figure 11. Experimental and theoretical attenuation spectra

for the most concentrated sample with the volume fraction
44.5%. The bimodal PSD is shown in Figure 12.
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- Figure 12. Bimodal particle size distribution providing the

theoretical attenuation spectra shown in Figure 11 for the 44.5%
volume fraction. )

attenuation coefficient ‘on the volume fraction. This
experiment justifies ‘the' generalization of the theory
describing sound propagation through the dispersed
system. '

The generalization of the “coupled phase theory”
performed in this paper expands significantly the limits
ofthetheoretical interpretation of the attenuation spectra
including polydisperse systems. The “coupled phase
theory” requires information about particle drag coef-
ficients. The assumption about particle spherical shape
allows us to use the “cell model” as a-convenient approach
to-calculate drag coefficients. The generalization of the
“cell model” to the polydisperse case requires at least one
additional parameter. The mass conservation law helps
to introduce this parameter, referred to as the “shell
factor”. This additional parameter adjusts the value of
the energy dissipation inthe cell. The shell factor should
be the subject of the optimization procedure as well as
other unknown characteristics of the system such as
particle size distribution. .

The new theory takes into account two mechanisms of
sound attenuation: viscous and structural losses. This
makes it valid for thé concentrated system containing rigid
dense submicron particles when the sound frequency lies
between 1 and 100 MHz. The new general version of the
theory makes it possible to calculate the particle size
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Attenuation Spectra
particle size is 5 um, density contrast is 3
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Figure 13. Attenuation spectra caused by the scattering and
viscous losses for the two disperse sytems with volume fractions
10% and 40%. The particle size is 5 um, the density contrast
is 3, and the compressibility of the particle is much less than
the compressibility of the liquid.

floccules, (d) a mixed polydisperse system containing two
or more chemically different dispersed phases, and (e) a
polydisperse system with macroscopic structure.

The new theory has been successfully tested. The
particle size distribution measured independently with
Sedigraph provides attenuation spectra matching experi-
mentally measured attenuation spectra for volume frac-
tions up to 30%.

Characterization of the dispersed system with acoustic
spectroscopy makes it possible to characterize aggregation
phenomena.
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Appendix A. Relative Contribution of the
Viscous and Scattering Losses

A particle oscillating under the influence of sound also
generates a compression wave. The'part of the acoustic
energy redistributed from the primary sound wave to the
induced compression wave does not reach the receiver of
the sound. This mechanism of the acoustic attenuation
is referred to as “scattering losses”. It is similar to some
extent to light scattering.

The theory of scattering losses in concentrated disperse
systems should take into account multiple scattering
effects and hydrodynamic interactions-between particles.
However, it turned out that these two factors are not
significant for suspensions. of rigid solid particles.

- The multiple scattering effect is small compared to the
single scattering effect, according, for instance, to ref 22.
- . The relationship between viscous and scattering losses
is illustrated in Figure 13 for dilute (¢ = 10%) and
concentrated systems (¢ = 40%). The scattering attenu-

(22) Barrrett-Gultepe, M. A.; Gultepe, M. E.; McCarthy,J. L.; Yeager,
E.B. A Study of Steric Stability of Coal—Water Dispersions by Ultrasonic
Absorbtion and Velocity Measurements. J. Colloid Interface Sci. 1989,
132 (1), 145-160.

(23) Holmes. A. K.: Challis, R. E.: Wedlock, D. J. A Wide-Bandwidth
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ation coefficient o has been calculated using the following
expression for the single scattering losses:!

w%igg[l(ﬂo - ﬁp)z ( Qo " 9 )2]
= Py + 5.1
% 20; |.3 Bo 20, 1 00 6D

where f; and §;, are the compressibilities of the liquid and
particle. The particle compressibility is assumed here to
be much smaller than the liquid compressibility.

The viscous attenuation coefficient has been calculated
using expressions 2.5 and 2.19. The particle size is 5 yum
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and the density contrast is 3 for both mechanisms. There
is no scattering attenuation compared with the viscous
one for the smaller particles at frequencies below 100 MHz.

Itis seen that scattering losses become comparable with
viscous losses in the range of the high-frequency asymptote
for the viscous losses. The frequency of the long-wave
requirement is about 15 MHz for particles of size 5 um.
It is seen that there is no scattering attenuation at all in

‘thelow-frequency range where the long-wave requirement

is valid.
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