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Abstract

Existing theories of electroacoustic phenomena in concentrated colloids neglect the possibility of double layer overlap and are valid mostly
for the “thin double layer,” when the double layer thickness is much less than the particle size. In this paper we present a new electroacoustic
theory which removes this restriction. This would make this new theory applicable to characterizing a variety of aqueous nanocolloids and
of nonaqueous dispersions. There are two versions of the theory leading to the analytical solutions. The first version corresponds to strongly
overlapped diffuse layers (so-called quasi-homogeneous model). It yields a simple analytical formula for colloid vibration current (CVI),
which is valid for arbitrary ultrasound frequency, but for restricted xa range. This version of the theory, as well the Smoluchowski theory for
microelectrophoresis, is independent of particle shape and polydispersity. This makes it very attractive for practical use, with the hope that it
might be as useful as classical Smoluchowski theory. In order to determine the «a range of the quasi-homogeneous model validity we develop
the second version that limits ultrasound frequency, but applies no restriction on «a. The ultrasound frequency should substantially exceed the
Maxwell-Wagner relaxation frequency. This limitation makes active conductivity related current negligible compared to the passive dielectric
displacement current. It is possible to derive an expression for CVI in the concentrated dispersion as formulae inhering definite integrals with
integrands depending on equilibrium potential distribution. This second version allowed us to estimate the ranges of the applicability of the
first, quasi-homogeneous version. It turns out that the quasi-homogeneous model works for ka values up to almost 1. For instance, at volume
fraction 30%, the highest «a limit of the quasi-homogeneous model is 0.65. Therefore, this version of the electroacoustic theory is valid for
almost all nonaqueous dispersions and a wide variety of nanocolloids, especially with sizes under 100 nm.
© 2004 Elsevier Inc. All rights reserved.
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1. Introduction

Electroacoustics is gradually gaining appreciation as a
powerful technique for characterizing electric surface prop-
erties. It is a potential replacement for microelectrophoresis
in many scientific and industrial applications. Many obsta-
cles in this development have been overcome, yet some still
remained unresolved.

The main problem that limits applications of this tech-
nique to the small nanoscale particles and low-conducting
liquids is the lack of the appropriate theory. There are al-
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ready several versions of the electroacoustic theory for con-
centrates [1-6], overviewed in the book [7]. They cover
concentrated dispersions due to incorporating particle hy-
drodynamic and electrodynamic interaction. They are valid
in the wide frequency range that is essential for electroa-
coustic measurements.

However, these theories employ one important assump-
tion that restricts the range of their validity. They do not take
into account overlap of double layers that might occur in
concentrated dispersions. In addition most of them employ
a so-called “thin double layer” assumption. The following
analysis would demonstrate that these two assumptions are
not acceptable for a variety of nanocolloids and nonaqueous
dispersions.
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Fig. 1. Various ranges of ka depending on the conductivity of dispersion and particle diameter.

The “thin DL assumption” implies that the thickness of
the double layer (DL), the so-called Debye screening length
«~ !, is much smaller than the particle radius a. The “thin
DL” assumption restricts particle size. In addition it limits
ionic strength, or alternatively conductivity of the solution,
due to the Debye length dependence on these parameters.
There is a simple approximate expression that allows us to
scope a range of the particle size and conductivity values for
valid “thin DL assumption:

Kma? ‘
kar [———>1, Y]
€08m Deff
where K, is the conductivity of the medium, &g is the dielec-
tric permittivity of vacuum, ey, is the dielectric permittivity
of the medium, and D is the effective diffusion coefficient.

The classical electrokinetic theory [8,9] introduces 3 ap-
proximate separate ranges of ka values: ka > 10; xa < 0.1,
10 > ka > 0.1 (Fig. 1). The numbers 10 and 0.1 are ap-
proximate borders of these ranges. There are much more
sophisticated ways to determine these borders using mod-
ern electrophoretic theories [10,11]. However, these approx-
imate numbers allow us to explain the main ideas of this
paper. :

The range of K, and a where xa > 10 can be considered
as a range of the “thin DL” theory validity. In regard to the
theory of electrophoresis, it is the range where the Smolu-
chowski theory [12] works. v

The range of K, and a where ka < 0.1 can be considered
as a range of the “thick DL.” This is the range of the Huckel
theory [13] for electrophoresis.

The range of K, and a where 10 > ka > 0.1 can be con-
sidered as a transition range between the “thin DL’ and the
“thick DL.” In the classical electrophoresis theory this tran-

sition is described by Henry—Ohshima function [14,15] if
surface conductivity is negligible.

The same conventional ranges of xa values, and conse-
quently K1, and a values, can be used for the electroacoustic
theory development. The main efforts, as we stated before,
have been concentrated on the range of ka > 10, the range
of “thin DL.” The one exception, the theory developed by
Babchin with co-authors [37], unfortunately is not valid for
concentrates, as we will show below.

As-one can see, the “thin DL” range covers aqueous dis-

. persions with sizes above 1 pm. However, the large por-

tion of aqueous dispersions with sub-micrometer belongs to
the transition range of moderate xa values. Practically all
nanocolloids with sizes under 100 nm belong to this range.
This means that “thin DL electroacoustic theories would
have problems dealing with nanocolloids.

This situation becomes even more pronounced for non-
aqueous systems. Usually conductivity of the nonaqueous
systems is orders of magnitude lower than that of aqueous
ones. This leads to the much smaller xa values. Practically
all nonaqueous dispersions belong to the range of either
moderate or low ka.

Nanocolloids and nonaqueous dispersions are very im-
portant classes of heterogeneous systems. The lack of the
appropriate electroacoustic theory certainly justifies efforts
for creating one. This is not an easy task, compared to the
case of the “thin DL.” The last one offers several simplifica-
tions that cannot be used for other two ka ranges.

One of the main advantages of the “thin DL” range for
theoretical development is the possibility to consider double
layers as isolated, not overlapped. This assumption brings
enormous simplification for mathematical modeling.

Expansion of the electroacoustic theory to the other ka
ranges would force us to drop this simplification. It is clear
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that thick DLs would overlap at much lower volume frac-
tions compared to the case of the thin DLs. It is possible to
introduce a critical volume fraction @gver above which DLs
overlap. This parameter can be determined following [7] as
a volume fraction for which the Debye length is equal to the
shortest distance between the particles. Thus

0.52
(1+ %)

ka

Pover ~ (2

This expression indicates that a strong nonlinear xa de-
pendence leads to the DL overlap even for practically dilute
systems if ka < 1. For instance, DLs start to overlap at the
volume fraction 0.04% if ka = 0.1.

Existing Babchin’s [37] electroacoustic theory for small
ka neglects DL overlap. This makes it of little use for
electroacoustics, which targets concentrated dispersions and
emulsions. Creation of a new theory that would take DL
overlap into consideration is imperative for further success-
ful development of this characterization technique.

As far as we know, only one attempt has been made to de-
velop electroacoustic theory for concentrates at the low and
moderate ka values with overlapping DLs. It is Ohshima’s
electroacoustic theory for “salt free media” [16—18]. This is
an imaginary case where there are only counterions present
in the bulk between particles. This could correspond to the
real systems with completely overlapped DLs and extremely
high surface charge. Unfortunately this model is hardly ap-
plicable to the real dispersions, but it revealed several pecu-
liar features of the “not thin DL theory.

For instance it predicts a completely different nature of
the “surface charge-surface potential” relationship. It pre-
dicts a so-called “condensation effect” that restricts uncon-
trolled growth of the surface potential. Stern layer follows
directly from the mathematical theory, in contrast to the clas-
sical DL theory, where it must be introduced as an additional
entity.

We will follow this line and will show that surface charge
and surface potential (or ¢-potential) played very different
roles in the surface characterization, compared to the “thin
DL case.

Ohshima’s theory tells us also that appropriate model-
ing of the ion distribution in the interparticles space might
lead to a significant simplification of the mathematical the-
ory. The question is to find a more suitable distribution.

In this paper we use two different models. The first
one, following Ohshima, considers strongly overlapped
DLs, when Debye screening length exceeds substantially
the characteristic distance between the surfaces of neigh-
boring particles in the dispersion. In this so-called “quasi-
homogeneous” case, the relative variation of the concen-
tration of every ionic component in the equilibrium double
layer is negligible. This allows us to model ion concentra-
tions as space independent, which leads also to the space in-
dependent constant conductivity. This “quasi-homogeneous
model” allows us to take into account all ion species, not
only counterions as in Ohshima’s theory. Consequently,

“quasi-homogeneous model” is much closer to the real col-
loids.

The quasi-homogeneous model does not apply any re-
strictions on the frequency. However, it is clear that the
“quasi-homogeneous model” is valid for the restricted range
of low and, perhaps, moderate «xa values. It is impossible
to determine the «a validity range being within this model
framework. It turns out that there is a possibility for one
more model, which would allow us to determine the validity
range of the “quasi-homogeneous model.”

This possibility corresponds to the case where the double
layer is thick enough compared to ion diffusion drift during
the period of reciprocal cyclic frequency of ultrasound. It
occurs when the DL relaxation time (Maxwell-Wagner re-
laxation time [18-20]) exceeds substantially the reciprocal
cyclic frequency of the ultrasound. In other words, this is the
case where frequency of measurement is much higher than
Maxwell-Wagner frequency.

Itis known that active conductivity current equals the pas-
sive dielectric displacement current at the Maxwell-Wagner
frequency. For frequencies much higher than Maxwell—
Wagner frequency, active conductivity current becomes neg-
ligible compared to the dielectric displacement current.

The dielectric displacement current is independent of the
concentration of ions, whereas conductivity current com-
pletely depends on it. If the measurement frequency exceeds
significantly the Maxwell-Wagner frequency, we could ne-
glect conductivity current and consequently eliminate de-
pendence on the ion concentration in the complex structure
of the overlapped DLs from the mathematical electrody-
namic equations. This simplification is sufficient for creating
an analytical electroacoustic theory. We will call this model
a “high frequency model.”

Summarizing, we could say that we develop in this paper
two approximate analytical electroacoustic theories for con-
centrates. The first one, the “quasi-homogeneous model,” is
valid for any frequency, but restricts the xa from above. The
second one, the “high frequency model,” restricts frequency,
but is valid for any ka.

The second model is much more complicated mathemat-
ically. However, it allows us to determine range of ka where
the first model is valid.

We develop these theories for the colloid vibration cur-
rent mode of electroacoustics predicted 70 years ago by De-
bye [21]. Expressions for dynamic electrophoretic mobility
should be valid for the ESA mode of electroacoustic mode
as well.

2. General electroacoustic theory

Colloid vibration current (CVI) is an alternating electric
current generated in the dispersion under the influence of ul-
trasound. There is a detailed description of this phenomenon
given in Chap. 5 of Ref. [7].
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The general mathematical formulation of the problem in-
cludes equations of conservation for electric charge:
.2 ap
divi = —— 3
o 9

and Poisson equation:
divD = p, @

where i and D are the vectors of ionic electric current
density and sound-induced electrostatic displacement, cor-
respondingly, o is the sound-induced component of bulk
density of ionic charge, and ¢ is time.

In electrolyte solution vector i includes two components:

e clectromigration current fe = KnE, caused by the ac-
tion of sound-induced electric field strength E on the
medium with conductivity Kp;

e convective current iy = pgv, caused by sound-induced
movement of liquid with velocity v and equilibrium!
bulk charge pg:

i=1i.+iy=KmE + pob. 5)

Vector D is proportional to the vector of the electric field
strength in electrolyte solution and in the volume of noncon-
ducting disperse particles:

D=c¢E. - (6)
For the volume of nonconducting particles,

K=K,=0, €= égp.

For the electrolyte solution,

K =Kn,

£ =én.

The system of Egs. (3) and (4) may be transformed to the
one complex equation of continuity of the complex current.
This well-known procedure represents the time dependence
of all field-induced values X; with the factor e/®!:

Xi(r,t) = X;(r)el™, )

where j is a complex unit number, and w is ultrasound fre-
quency. o

Applying transformation (7) to the i, D, and p, and tak-
ing into account that dp /3t = jwp, it is easy to derive from
Eqgs. (3) and (4) the following equation for the complex cur-
rent:

divi* =0, ®)

where

¥ =il +iyv=K"E| + pov = (K +iwe)E] + pov )
I Sound-induced charge density p; is neglected here because the prod-

uct of the two (p; and v) sound-induced multipliers occurs out of the linear
approximation with respect to the ultrasonic amplitude.

is a complex electric current density, which besides the con-
tribution of both electromigration K E; and convective POV
components includes the contribution of the sound-induced
displacement current, iwe E 1, which is connected with the
dielectric re-polarization.

Introducing the sound-induced electric potential ¢,

E1 = —grad g (10)

and substituting (10) into (9) and (8) we obtain the equation
that describes the space distribution of the sound-induced®
electric potential ¢;:

div{(Km+iw8m)grad<p1}=gradp0-z'5. (11)

This equation can be simplified by taking into account
the linear approximation with respect to the applied field.
We should consider coefficients po and Ky, as independent
of the driving force that is a gradient of ultrasound pressure
for the CVI mode of electroacoustics.

The distribution of the sound-induced potential @1 within
the dielectric particles should satisfy the Laplace equation:

V2] =0. (12)

The boundary conditions on the particle-solution inter-
face § for this potential are continuity of the potential,

(o1 —eD)]s =0, (13)

together with continuity of the normal components of the
electrostatic induction:
=0. (14)

g don B
™ on P on s
The relation between CVI and local complex current i * is
given with the usual (see, for example, [23,24]) definition
of CVI as macroscopic electric current, which is induced
by ultrasound under the condition of shortly closed effec-

tive external circle, providing zero-value of the gradient of
macroscopic electric potential:

(E) =0, (15)
. | Pp—p
CVIE(z*)=-‘7/z*dV[<El)=OE¢——ppm = j1q - (grad P),
Y (16)
S 1
(E1>=V/E1dVE—Vfgradgo1dV. (17)
\% 14

The macroscopic current and potential gradient defined
by Egs. (16) and (17) represent the average of correspond-
ing local values over the volume element V of a suspension
containing a large amount of particles. At the same time
this element must be small with respect to ultrasound wave-
length. We also use the notion of the dynamic electrophoretic
mobility pq introduced by O’Brien [22-24]. Parameters ¢,
©m, and pp are, correspondingly, volume fraction, density of
media, and density of disperse particles in the dispersion,
(grad P)—macroscopic pressure gradient in the ultrasonic
wave.
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In accordance with the definitions (16) and (6), the value
of CVI may be expressed as the averaged sum of the convec-
tive current iy and complex conductivity current ;. Among
the distributions pg, U, Ky, and ET, only the last one has

an entirely electroacoustic nature. Electric charge density pg -

and conductivity Ky, may be derived from the theory of equi-
librium DL.

The space distribution of ¥ includes, generally speaking,
a weak contribution of the electroacoustic effect. The main
part of ¥ has a pure acoustic nature. It is induced by inertial
forces acting in the vibrating system with space nonhomo-
geneous density.

Analytical solution of the general mathematical problem
formulated by Eqgs. (11)-(16) requires further simplifications
and modeling, in particular with regard to the conductivity
and electric charge space distributions. We use two simplify-
ing models: the “quasi-homogeneous model” and the “high
frequency model.” These models and corresponding solu-
tions are given in the following sections.

3. Quasi-homogeneous model

In Section 1 we gave a short overview of the role of the
parameter ka in the electrokinetic and electroacoustic phe-
nomena. This traditional presentation is based on the com-
parison of the DL thickness with the characteristic dimen-
sion of the dispersion. In the case of the traditional dilute
systems there is only one special parameter to compare the
Debye length with; it is particle size a. That is why parame-
ter xa is chosen for characterizing many DL related effects.

In concentrated dispersions the other special parameter
appears; it is an average distance between particles d. In
the case of the “thick DL” this parameter is of greater im-
portance because it determines the degree of DL overlap.
In this section we consider the situation where DLs overlap
strongly, which corresponds to the following relationship be-
tween Debye length and interparticle distance:

kd L 1. (18)

In this case the characteristic space that is accessible for
ions is much narrower than the Debye screening length « L.
There is no noticeable deviation from the homogeneous dis-
tribution of ions that may arise in disperse medium. We
could neglect these deviations completely, considering ion
concentrations ng constant, space independent. This is the
essence of the quasi-homogeneous model.

In the frame of this model, there is one well-known
[25-27] feature of the equilibrium electric potential @¢ in
the dispersion medium: in the depth of suspension with
strongly overlapped double layers the value of @ occurs
to be space-homogeneous and equal to the potential of the
surface (¢ -potential)

Do =2¢. (19)

The theory of a diffuse screening layer connects directly
the distribution of screening charge density pp with equilib-
rium electric potential @ and, hence, pg also occurs to be
spatially homogeneous in the dispersion medium:

RT By F®g RT

F¢
—_ inh ——~ — 2 —.
£0 Emk ~ sin &mk “ sinh (20)

In the frame of the same theoretical approach the local
concentrations of cations and anions (upper index “+” and
“—") may be expressed as

1 RT F¢
Cétzgﬁam/czexpOLﬁ). 21

The space independence of ion concentrations COi means
space independence of the local conductivity Kp,:

F2

Km=:§?(0+c;4-p"cg) (22)

In the frame of the quasi-homogeneous model we can de-
rive a simple relationship between the surface charge density
o and the ¢ -potential, even without using the cell model (i.e.,
for arbitrary geometry of disperse phase). The condition of
the dispersion electroneutrality can be written as the follow-
ing simple equation:

ops = (1 —¢)po, (23)

where s is the specific (for unit volume of disperse phase)
surface of the disperse phase and pg local bulk charge den-
sity given with Eq. (20).

It follows from Egs. (23) and (20) that

TRT1—¢ , -
o=-— emk“sinh¢. (24)
s F

For monodisperse dispersion of spherical particles, when
s =3/a Eq. (24) becomes

1RT 1—¢
o==-—
3F

This equation reflects a very important distinction between
“thin DL” and “thick, overlapped DL.” In the case of
the traditional “thin DL theory, both surface charge and
{-potential are surface properties, independent of the vol-
ume fraction.

In the case of “thick DL,” surface charge is a true parame-
ter of the surface properties. The electrokinetic ¢-potential
might lead to erroneous conclusions because it depends on
the volume fraction, not only on surface charge. For in-
stance, if we have surface charge caused by adsorption of
ions, the value of the surface charge characterizes this ad-
sorption. It remains constant and volume fraction indepen-
dent for the same adsorption. At the same time ¢ might be
different due to the volume fraction dependence. This means
that the ¢-potential value might lead to the wrong conclu-
sions about adsorption. This all indicates that both ¢ and
surface charge must be reported when dealing with concen-
trated dispersions with thick DL.

sma/c2 sinh E (25)
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Due to the space independence of the local conductiv-
ity Km and equilibrium screening charge density pg within
the interparticle electrolyte medium, Eq. (11) reduces to the
Laplace equation:

Vg, =0. (26)

The problem of the distribution of field-induced electric
potential ¢; in the limiting case of a strongly overlapped
electric double layer is completely equivalent to the problem
of the potential distribution in the system of dielectric par-
ticles in the dielectric medium. It is clear that the condition
(15) of the zero macroscopic potential gradient (character-
istic of CVI mode) means automatically zero values of the
local electric fields E 1 everywhere in the dispersion.

This leads to the zero values of the local electromigration
currents everywhere in the dispersion. As a result, in accor-
dance with Egs. (9) and (20), formula (16) for CVI reduces
to the simple form

- RT . Fr o
CVli=pg-(v)= Tem/cz sinh %(v), 27)

where (v) = (1/V) [, UdV is the macroscopic velocity of
dispersion medium with respect to the dispersed particles.
We also take into account that in the case of strongly over-
lapped double layers the density of screening charge pg is
space-independent everywhere in the liquid that flows with
respect to particles with the velocity 7. -

The value () represents the drag of the liquid through
the system of the particles, under the action of inertial forces
caused by sound-induced vibration movement of the consid-
ered infinitesimal element V. This drag of the liquid may be

expressed through the pressure gradient in the sound wave .

(V P) by means of the well-known “coupled phase model”
(see, for example, [7,28,29])

- ¥ Pp — Ps

=2 (VPso), (28)
) vy os+io(l—9)Epppm %

where o5 = pp + (1 — @) o is an average density of the dis-
persion; y = (9n¢$2)/2a?, n is a dynamic viscosity of the
dispersion media; and §2 is a drug coefficient introduced as
following in the Stokes law; F = 6mnas2v.

Eqgs. (22) and (23) lead to the new equation for the CVI
of the strongly overlapped diffuse double layers between the
particles (for quasi-homogeneous approximation):

2RT F
cvi= 2RTem 2 ginn( 25
9Fn$2 RT

Pp — Ps
X - 7 (
ps +iw(l =) PpPm-

VPy). (29)

One of the most interesting peculiar features of this ex-
pression is the absence of the linear dependence on the vol-
ume fraction. This unusual result becomes clearer if we take
into account the volume fraction dependent coefficient be-
tween surface charge and ¢ -potential (Eq. (24)). We can use

this equation to express CVI through the surface charge
2

20sa° ¢ Pp — Ps
CVl= - VP, 30
Ins2 1—<pps+zw(1—¢)%pppm< =l G0
or for monodisperse dispersion
2 -
cvi= 22 _¢ P = P (VPy). (1)

302 1= ¢ ps+io(l—¢) ¥ pppm

These expressions for CVI clarify that the quasi-homo-
geneous model is consistent with the general notion about
electroacoustics as a tool for characterizing surface proper-
ties. It shows that CVI is proportional to the degree of the
surface ionization indeed.

Following the usual electroacoustic theory path, we in-
troduce dynamic electrophoretic mobility, as was done by
O’Brien [23,24]:

CVI Pm
©{(V Pso) pp — Pm’

According to Eq. (31) for CVI, dynamic electrophoretic
mobility in the case of strongly overlapped DLs equals

MHd = (32)

_ 20a Pm
382 ps +iw(l = ¢) L pppm’

Hd (33)

The applicability of Eqs. (29)—(33) is restricted only by
the condition (18) of the strongly overlapped diffuse layers.
There is no restriction on the frequency of ultrasound and
characteristic frequency of the screening charge relaxation
(Maxwell-Wagner relaxation).

The second model presented below does just the opposite;
it restricts ultrasound frequency keeping xa free.

4. High-frequency model

In this version of the electroacoustic theory we restrict
frequency instead of xa. If the measurement frequency is
much higher than the frequency of Maxwell-Wagner relax-
ation wmw,

K
0> 8—“‘ = omw, (34)

m
the contribution of the ionic conductivity current to the total
complex current is negligible. In this case Eq. (11) reduces
to the Poisson equation

i
Vg = —— grad pp. (35)
m

In addition we could neglect the contribution of the ionic
current to total current density. As a result the total current
density transforms to

%= ja)SE1 + pov. 36)

Unfortunately, these simplifications are still not sufficient
for analytical solution of the general electroacoustic problem
for the complicated geometry of the concentrated dispersed
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phase. To solve the problem for a concentrated suspension
with arbitrary thickness of DL we use the electrokinetic cell
model that is developed in [30].

This cell model replaces the consideration of the disper-

sion as a multitude of dispersed particles with the consider- -

ation of a single cell. This cell represents a single spherical
particle with the fraction of dispersion medium that belongs
to it. The outer boundary of the cell is modeled as concen-
tric to the particle spherical shell with the outer radius b. The
value of b adjusts the solid content in the cell to be equal to
the volume fraction ¢ of particles in dispersion:

a3

= 37)

Before its application to electrokinetic theory, the cell
model was successfully used:

o for pure electrodynamics problems (first of all it is
Maxwell-Wagner theory of dielectric permittivity of
concentrated mixtures [18-20];

o for pure hydrodynamic problems (an example is the
Kuwabara cell model of hydrodynamic permeability of
concentrated array of spheres [31], which we use here
for describing the motion of particles in the liquid under
influence of ultrasound);

e in the theory of equilibrium double layer of the particles
in concentrated suspension (for example, [32-34]).

The basic principles of the cell model that are common
for all above-mentioned applications are:

(i) equations describing fields in the dispersed phase and
dispersion medium and the conditions at the particle
surface have the same less-coordinated form for corre-
sponding parts of the cell (central particle, representing
the disperse phase, spherical shell, representing the dis-
persion medium and the surface between them);

(ii) the surface conditions at the outer boundary of the cell
should reflect macroscopic fields that are acting in the
dispersion and other features of the system as a whole.

In the frame of a spherically symmetrical cell model, the
equilibrium distributions of the electric potential and space
charge depend on the distance r from the center of the cell
only. However, the action of ultrasound introduces a cer-
tain direction in the dispersion, which coincides with the
wave vector. Therefore, the space dependence of cell sound-
induced distributions should include the angle 6 between the
wave vector and the radius vector of the given point, in ad-
dition to the spherical coordinate r..

Under the conditions of the long-wave approximation
(wavelength is much larger than particle size) the distribu-
tion of acceleration of macroscopic elements of the suspen-
sion volume, vibrating in the sound wave, may be considered
a homogeneous vector distribution. Consequently, the com-
ponents of local sound-induced vector fields, for example,

electric current density j and liquid velocity ¥, may be rep-
resented as

Jr0,0) =€ j(r,0, w)

= e/ {i, jr(r, ) 0S8 + iy jo (r, ) sin6),  (38)
U(r,0,1) = “'5(r, 6, w)

= e (7,0, (r, @) cos O + igvg (r, ) sin},  (39)

while the distributions of sound-induced scalar fields, for
example, electric potential ¢; and pressure P, have the fol-
lowing form:

P1(r,0,1) =" o1 (r, 0, w) cos = ¢! 1 (r, w) cosh, (40)
P(r,0,1) ="' P(r,0, ) cosf = e'® P(r,w)cosf. (41)

In order to find the sound-induced electric potential and
current which are in accordance with the above-mentioned
basic principles, we have to consider Laplace equation (12)
for the inner space of the particle (0 < r < a) and Eq. (35)
for the space of spherical shell (¢ < r < b) that represents
the dispersion medium.

For the surface r = a between the particle and dispersion
medium, Eqs. (14) and (15) specify the surface conditions.

The surface condition at the outer boundary of the cell
(r =) in the case of CVI should reflect the condition (15)
of the absence of sound-induced macroscopic electric field
in the dispersion. This requires the definition of the cell ana-
logue of macroscopic electric field strength that must be
expressed in terms of electric potential distribution at the
outer surface of the cell. We use here a definition that yields
according to the work [30] the correct form for entropy pro-
duction through cell:

(E) =¢1(r)|r=s, (42)
(0) =ir(r)lr=b- (43)

The electrokinetic cell model formulated by Levine
[35,36] does not satisfy the Onsager symmetry require-
ments between kinetic coefficients for electrophoresis and
streaming potential (see Ref. [20]). This leads to incorrect
qualitative results (see Ref. [21]). It is interesting to note
that definition (42), which is embedded specially for the On-
sager symmetry relations, coincides with the definition of
the macroscopic electric field given in the Maxwell-Wagner
theory of the dielectric permittivity.

It follows from the Eq. (42) that the condition (15) of zero
macroscopic field in the dispersion in the frame of cell model
transforms to

1(r)lr=p =0. (44)

Using the CVI definition in accordance with Eq. (16)
and comparing it with Eqgs. (43) and (36) we obtain the
following expression for CVI that is a high frequency as-
ymptotic:

do(r)

CVI= —jwen + po(b)vr (b). (45)

r=>b

-



354 V.N. Shilov et al. / Journal of Colloid and Interface Science 277 (2004) 347-358

The solution of Eq. (35) corresponding to the form (40)
with surface conditions (13)—(15) (surface S is determined
by r = a) may be represented as

J 3 _
3r2w8mIM[b Ii(a,b) - h(a, b)]

—(a,r) + ha, r)],

o1(r) =

a3 (ep —em) = (ep + 26m)
T ad(ep—em) — b (ep + 26m)’
[ d
hn = [uo0Pan,
dry

a

A d
Il(a,r)zfvr(rl)—@rfdr/. (46)
dry

Substitution of the ¢ (r) into Eq. (45) leads to the next in-
tegral form, expressing the CVI for our limiting case, when
the ratio of ultrasound frequency to Maxwell-Wagner fre-
quency is large:

_¢li(a, b)(em — &p) + (1/b*) 1o (a, b) 2em + &p)
(1 —g@)ep + 2+ @)éem
+ 0 (b) po(b). (47)

Further development of the CVI cell theory requires a
definite expression for the distribution of electric charge den-
sity po(r) in the equilibrium double layer, as well liquid
velocity ¥(r, §) with respect to the particle within the cell.
The mathematical formulation and solution of the problem
of equilibrium double layer for the case of Debye approxi-
mation are given in Appendix A. The hydrodynamic prob-
lem of the mutual motion of the components of concentrated
suspension, induced by its vibration in ultrasonic field, de-
rived by Dukhin and Goetz (see Ref. [7]) for the Kuwabara
cell model is given in Appendix B.

CVI=

5. Results and discussion

In this section we analyze dependences derived in the pre-
vious sections for CVI and dynamic mobility for the two
approximate versions of the electroacoustic theory. Compar-
ing these versions between themselves would allow us to
determine the ranges of their validity.

The first version, the so-called ‘“quasi-homogeneous
model,” corresponds to the case where the space density of
screening charge is almost constant in the liquid medium be-
tween the particles. One of the most peculiar features of this
approximate theory is CVI dependence on the volume frac-
tion. It is very different for the case of the constant, volume
fraction independent, surface charge o or ¢ -potential.

In the case of strongly overlapped DLs the vector field
of the density of sound-induced electric current is similar to
the vector field of the local liquid velocity with the factor of

similarity
RT , . F¢
=— h—.
£0 7 Emk “ sin RT
As a result, a quasi-homogeneous model with constant
¢{-potential predicts that dependence of CVI on the vol-

ume fraction and geometric parameters of the particles (see
Eq. (30)) is completely presented by the factor

Pp — Ps
ps +io(1 =)L pppm

This factor includes, besides the densities of the disper-
sion medium and dispersed phase, only one characteristic
of dispersion, namely hydrodynamic friction coefficient y.
It does not include any electric characteristics. At the same
time, the similarity factor, pg, being expressed through the
¢-potential, includes no geometrical parameters. This is il-
lustrated in Fig. 2, which demonstrates that the magnitude
of CVI decreases monotonically with increasing volume
fraction. This corresponds to increasing hydrodynamic fric-
tion coefficient y (¢, w) while bulk charge density pg re-
mains constant under the condition of ¢-independent ¢-
potential. It is important to emphasize, however, that quasi-
homogeneous approximation is not valid for small volume
fractions .

The volume fraction and frequency dependence of CVI
for the case of the constant surface charge density in the
frame of quasi-homogeneous approximation is presented in
Fig. 3. Here, contrary to Fig. 2, CVI increases almost pro-
portionally to volume fraction at the range of small ¢. It
occurs because the total charge of the particles dispersed
in the unit volume is almost proportional to the particle
volume fraction. According to the electroneutrality of dis-
persion, the space-independent density of equilibrium bulk
charge is proportional to (pg o ¢). It is also evident that
for small enough volume fractions the movement of every
particle would be independent of the movement of its neigh-
bors and, correspondingly, the macroscopic velocity (U)
will be independent of the volume fraction ¢. Hence, un-
der the above-mentioned conditions and in accordance with
Eq. (31), CVI = (¥)pp. This means that the magnitude of
CVI becomes proportional to the volume fraction. Further
increasing of ¢ induces the hydrodynamic particle—particle
interactions and the friction coefficient will increase with ¢
very fast. Correspondingly, the magnitude of macroscopic
velocity (v) would decrease fast. The linear increase of CVI
at small ¢ will be replaced by a decrease of CVI with ¢ when
it reaches values that are large enough.

There is only one frequency-dependent coefficient in the
expression for CVI in the case of quasi-homogeneous ap-
proximation:

Y Pp — Ps
y(p,w) ps +iow(l — <p);;(—¢;%5pppm

It reflects the finite time of the establishing of the stationary
profile of the local velocity in the liquid between disperse
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0.1
8

Fig. 2. The dependence of CVI/(V P) on the frequency and on the volume fraction, calculated with the quasi-homogeneous model for constant { =25 mV
and the concentration C = 104 mol/L of 1-1 electrolyte being in thermodynamic equilibrium with suspension. Parameters used: @ = 1 um; pm = 1 g/cm?3,

pp=2 g/cm3, n= 1073 kg/ms; em = 30¢.

_CVIL 10
ZaradP)!C

LogF (Hz)

Fig. 3. The dependence of CVI/(V P) on the frequency and on the volume fraction, calculated with the quasi-homogeneous model for constant surface charge
density 0 = 6.64 x 1075 C/m?. Other parameters are the same as in Fig. 2 with the exception of the ¢ -potential.

particles. As it was pointed in [7] this time 7, decreases
with increasing of the volume fraction of the solid phase in
suspension and corresponding decreasing of the effective hy-
drodynamic radius dy, of pores in suspension (th pmdg /n).
This fact manifests itself in Figs. 2 and 3 by the extension
of the area with relatively weak frequency dependence of
CVI with increasing volume fraction. Such a shift of the
CVI relaxation frequency with increasing volume fraction is
characteristic for both constant surface charge and constant
¢ -potential.

Figs. 4 and 5 correspond to the second version of the
theory, the “high frequency model.” These figures show
the dependencies of CVI on ka at the constant ¢ -potential
(Fig. 4) and constant surface charge density (Fig. 5). The

low-frequency limit (Eq. (47)) corresponds to the frequen-
cies that satisfy nonequality (34), and simultaneously exceed
substantially the characteristic frequency of hydrodynamic
relaxation

K
— Lo ——
€m Pmdy

(48)

The CVI(ka) curves in Fig. 4 are close to the par-
abolic’ dependencies in the vicinity of the coordinates ori-
gin. The slope is steeper for the smaller volume fraction.
These features are characteristic of the quasi-homogeneous
model of overlapped double layers under the condition of
@-independent ¢ -potential.
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CVI 1o
ZaradPy10

—Ka

2 4 6 8 10

Fig. 4. The dependence of high-frequency CVI/(VP) on parameter xa
for constant { = 25 mV, and for different values of the volume fractions:
curve 1, ¢ =0.1; curve 2, ¢ = 0.2; curve 3, ¢ = 0.3; curve 4, ¢ = 0.4;
curve 5, ¢ = 0.6. Other parameters are the same as in Fig. 2, and ep = 3g.

CVI 10
gradPy! 0

1
. Ka

2 4 6 8 10

Fig. 5. The dependence of high-frequency CVI/(V P) on parameter ka for

constant surface charge density o = 6.64 x 1075 C / m?, for different values
of the volume fractions: curve 1, ¢ = 0.01; curve 2, ¢ = 0.05; curve 3,
¢ =0.1; curve 4, ¢ = 0.3; curve 5, ¢ = 0.6. Other parameters are the same
as in Fig. 4 with the exception of the ¢ -potential.

The CVI(ka) dependence slows down at the range of
larger xa, with the rate reciprocal to the volume fraction.
As aresult, if ka is large enough, the partial inversion of the
CVI(ka) dependence takes place (for example, the curve 1
lies below curves 2 and 3). Such an inversion reflects the
breakdown of the DL overlap for smaller «a if the volume
fraction is small enough. Under these conditions the central
zone of the space between the particles becomes filled with
electroneutral solution. The expansion of this zone leads to
the slowing down of the CVI(xa) dependence.

For the case of constant surface charge density, the depen-
dencies CVI(ka) are shown in Fig. 5. They are decreasing
functions, in contrast to the case of constant ¢-potential.
This occurs because the total charge of the diffuse layer does
not increase (in contrast to the case of constant ¢ -potential)
with the increasing of ionic strength. Increasing xa or in-
creasing ionic strength causes just one effect in this case—
approaching of the moving electric charge to the particle
surface due to the decreasing DL thickness. Velocity of the

Ha/ tah
1
\
0.9
0.8
2
0.7
0.5
1
ka
0.5 1 1.5 2

Fig. 6. Dependence of the j4//gn ratio on ka; pugy is the dynamic elec-
trophoretic mobility, corresponding to quasi-homogeneous approximation,
g corresponding to high-frequency approximation, for different values of
the volume fractions: curve 1, ¢ = 0.3; curve 2, ¢ = 0.4; curve 3, ¢ = 0.6.
Other parameters are the same as on Fig. 4.

liquid—particle motion is smaller close to the surface. This
would lead to the reduction of CVI, which is proportional
to the product of the moving electric charge by the velocity
of this motion. Such decay of CVI is faster for the smaller
volume fraction because of the above-mentioned breaking of
the double layer overlap.

It is important to mention that if information about both
parameters « and a is available, interpretation of the CVI
measurement would yield data on both ¢-potential and sur-
face charge o. Volume fraction dependence of CVI would
reveal whether the constant ¢-potential model or constant
surface charge model is valid for a particular system. How-
ever, it seems to us that the surface charge model could
be more adequate. It could be justified by the fact that ad-
sorption forces, which could be responsible for the surface
charge formation, exceed substantially electrostatic forces
induced with volume fraction variation.

The validity of Eq. (47) is not restricted with respect to
the parameter ka. This makes it possible to use this equa-
tion to find the ‘ranges of applicability of the “quasi-homo-
geneous model.” It is convenient to do this analysis using
dynamic mobility instead of CVI. Equation (32) describes
the transformation from CVI to the dynamic mobility.

Fig. 6 shows the ratio of the dynamic electrophoretic
mobilities calculated using the quasi-homogeneous model
idh and the high-frequency model for several volume frac-
tions. As one could expect, quasi-homogeneous approxima-
tion works better for larger volume fractions.

As a quantitative measure we can use 10% deviation be-
tween the quasi-homogeneous model value and the exact
number calculated using the high-frequency model. This de-
gree of deviation occurs at

e ka < 0.65 for ¢ =0.3;
e xa < 1fore=04,
e xa<2fore=0.06.

In general, we may say that the quasi-homogeneous
model, being independent of the particle’s shape and poly-
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dispersity, provides good accuracy for characterizing con-
centrated dispersions with ka almost up to unity.

6. Conclusions

We have established the possibility of developing an ana-
lytical electroacoustic theory for concentrated colloids in the
range of low and moderate xa values. This ka range corre-
sponds to a variety of aqueous nanocolloids and practically
all nonaqueous colloids.

There are two simplifying conditions that could be used
for this development. The first one restricts xka by requir-
ing double layers of particles to be strongly overlapped. This
version of the theory is mathematically simple. It is valid for
particles with any shape and polydispersity, which makes it
similar to the Smoluchowski theory. It applies no restriction
on the ultrasound frequency. It is valid for ka values up to
almost 1.

The second version restricts frequency of ultrasound to
the range much above Maxwell-Wagner frequency. It is
mathematically more complicated, but it applies no restric-
tion on ka. The last feature of this theory allowed us to
estimate the validity range of the first version.

We have also stressed here a major difference in the “sur-
face charge-¢ -potential” relationship between cases of “thin
DL” and “thick DL.” In the case of the “thin DL” both pa-
rameters are volume fraction independent and can be used
for characterizing surface. In the case of “thick DL” there is
a volume fraction multiplier relating these parameters. As a
result it is imperative to specify which one of them is vol-
ume fraction independent and can be used for characterizing
surface properties.

We give here mathematical expressions and analyze them
for both cases, constant surface charge and constant ¢-po-
tential.
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Appendix A

Solution of the first problem for the case of 1-1 electrolyte
includes the following steps.

First, the Poisson-Boltzman equation with respect to
the distribution of dimensionless electric potential b r)=
F®o(r)/RT in the equilibrium diffuse double layer, sur-
rounding particles. In the frame of the cell model this po-
tential depends only on one space coordinate, namely on the
distance r from the center of the cell:

V2&o(r) = k* sinh[ Py (r)]. (A.D)

The surface condition on the particle surface, represented
as sphere with radius a, is

~ F
Po(r)lr=a = RTY (A.2)

The surface condition at the outer surface of the cell re-
flects the electroneutrality of suspension:

ddo(r)
dr |,

=0. (A.3)

This problem was solved in [32,33] for the case of Debye
approximation, which consists in replacing the right-hand
side of the Poisson-Boltzman equation with the first term
of its power series: sinh[(ﬁo(r)] — & (r). The solution has
the next form:

a(kbcosh[k (b —r)] — sinh{k (b — r)])
r(xbcosh[k (b — a)] — sinh[x (b — a)])
This solution for the surface charge yields the following

expression for the surface charge density of the particle, o =

ddy(r
Em%“:w

Do(r)=¢ (A4)

— &m¢ K(b—a)cosh[K(b—a)]+(K2ab—-1)sinh[x(b—a)]
0= «b cosh[k (b—a)]—sinhlk (b—a)] . (A.5)

For the limiting case of a strongly overlapped diffuse
layer (quasi-homogeneous approximation) k (b —a) < 1 this
equation reduces to

LT
3

The more general form of the expression for o, without
linearity assumption with respect to ¢-potential, and even
without using the cell model (i.e., for arbitrary geometry
of disperse phase) may be obtained in the frame of quasi-
homogeneous approximation directly from suspension elec-
troneutrality, as is shown in Section 3.

emar’t. (A.6)

Appendix B

The mathematical formulation of the problem describing
a sound-induced distribution of v(w, 7) in the frame of the
cell model consists of the well-known system of the Stocks
equation and matter conservation equation for incompress-
ible liquid with a zero slip condition at the particle surface:

[wpmU(r, 0, w) = nrotv(r, 0, ) + grad P(r, 0, ), (B.1)

divd =0, (B.2)
vr|r=a =0, (B.3)
Vg lr=a =0. (B.4)

The surface condition at the cell’s outer surface connects
the distribution of the normal component of the local veloc-
ity with the value of the sound-induced macroscopic veloc-
ity, Eq. (28):

- Pp — P
Urlr=p = (V), = ? -

- : (VP),. B.5
ps +io(1 = ¢) % pppim & ®.3)



358 V.N. Shilov et al. / Journal of Colloid and Interface Science 277 (2004) 347-358

The second outer-surface condition, which is specific for
the Kuwabara model [31], reflects the irrotational nature of
the current of free liquid outside the dispersion:

rotv(r, 0, w)|,=p = 0. (B.6)

It can be transformed to the following form:

1/d dv,(r)

- — - =0. B.7
The solution of Egs. (B.1) and (B.2) with the surface

conditions (B.3)—(B.7) with regard to the distribution of the

components of the local velocity in vibrated dispersion is

a4 53
v (r o) _ E(E-n0-5)+3 1-5) hWds | gy

-2y +§f (1= 5)h(x) dx

r dv,
=— - B.9
vg (1, w) (vr+2dr>, (B.9)
where
at= azw,om/2nm, b= wapm/an,

2

72 = 2 /2. (B.10)

(v) is the macroscopic drag velocity of liquid disperse
phase with respect to dispersed particles,

3 dh h
_ I LR R B.11
Y = @0pm¢ 41< dx+x}r—a J (B.11)
h(x) = h1(x)ha(b) — hy(b)ha(x), (B.12)
— 1
hl(x):___exp( DIxtl sinx — cosx
X X
1
+j<x+ cosx—{—sinx) . (B.13)
-1
h2(x):exp(x) al sinx + cosx
(1—x .
+]( cosx—i—smx) , (B.14)
X

—(+)F+b)

5 3
X e
/(l - F—3>h(x)dx = —W

¢
3je@T2D5(1 4 (1 + j)F) (=14 (1 + j)b)—
x | 3je@2DH(—14 (14 HF)(1 + 1+ j)b)+
(4 +4))eM DD (3 _ 73y
(B.15)
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