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In our previous paper,! we have derived a new electroacoustic theory for concentrated (up to 45 vol%)
polydisperse colloids. We assumed two simplifications: thin double layer and negligible surface conductivity.
In this paper, we generalize this theory eliminating the second assumption by taking into account the
surface conductivity influence on the electroacoustic CVI signal.

Introduction

There are two quite different approaches to deriving an
electroacoustic theory. Historically the first began with
works by Enderby and Booth.23 They simply tried to solve
asystem of classical electrokinetic equations without using
any thermodynamic relationships. It was very complex
because they took into account surface conductivity and
concentration polarization effects. Although this initial
theory was valid only for dilute systems, this approach
was later expanded by Malrow, Fairhurst, and Pendse,*
who tried to generalize it for concentrated systems using
a Levine cell model® which is not appropriate for this
purpose.5

An alternative approach to electroacoustic theory was
suggested later by O’Brien.!%!3 He introduced the concept
of a dynamic electrophoretic mobility u4 and suggested a

t Disperion Technolgy Inc.

¥ Academy of Sciences of the Ukraine.

§ Science University of Tokyo.

(1) Dukhin, A. S.; Ohshima, H.; Shilov, V. N.; Goetz, P. J. Electro-
acoustic Phenomena in Concentrated Dispersions. New theory and CVI
experiment. Langmuir, in press.

(2) Booth, F.; Enderby, J. On Electrical Effects Due to Sound Waves
in Colloidal Suspensions. Proc. Am. Phys. Soc. 1952, 2084, 32.

(3) Enderby, J. A. On Electrical Effects Due to Sound Waves in
Colloidal Suspensions. Proc. R. Soc. London, 1951, A207, 329—-342.

(4) Marlow, B. J.; Fairhurst, D.; Pendse, H. P. Colloid Vibration
Potential and the Electrokinetic Characterization of Concentrated
Colloids. Langmuir 1983, 43, 611—626.

(5) Levine, S.; Neale, G. H. The Prediction of Electrokinetic Phe-
nomena within Multiparticle Systems. 1. Electrophoresis and Elec-
troosmosis. J. Colloid Interface Sci. 1974, 47, 520—532.

(6) Dukhin, A. S.; Shilov, V. N.; Borkovskaya, Yu. Dynamic Elec-
trophoretic Mobility in Concentrated Dispersed Systems. Cell Model.
Langmuir 1999, 15 (10), 3452-3457.

(7) Harker, A. H.; Temple, J. A. G. Velocity and Attenuation of
Ultrasound in Suspensions of Particles in Fluids. J. Phys. D.: Appl.
Phys. 1988, 21, 1576—1588.

(8) Gibson, R. L.; Toksoz, M. N. Viscous Attenuation of Acoustic Waves
in Suspensions. J. Acoust. Soc. Am. 1989, 85, 1925—1934.

(9) Dukhin.; A. S.; Goetz, P.J. Acoustic Spectroscopy for Concentrated
Polydisperse Colloids with High Density Contrast. Langmuir 1996, 12
(21) 4987-4997.

(10) Ahuja, A. S. Wave equation and propagation parameters for
sound propagation in suspensions. J. Appl. Phys. 1973, 44, 4863—-4868.

(11) Shilov, V. N.; Zharkih, N. I.; Borkovskaya, Yu. B. Theory of
Nonequilibrium Electrosurface Phenomena in Concentrated Disperse
System. 1. Application of Nonequilibrium Thermodynamics to Cell
Model. Colloid J. 1981, 43 (3) 434—438.

(12) O’Brien, R. W. Electro-acoustic Effects in a dilute Suspension
of Spherical Particles J. Fluid Mech. 1988, 190, 71-86.

(13) O’'Brien, R. W. Determination. of Particle Size and Electric
Charge. U.S. Patent 5,059,909, Oct. 22, 1991.

10.1021/1a991305y CCC: $19.00

relationship between this parameter and the measured
electroacoustic parameters such as colloid vibration cur-
rent (CVI) or electrosonic amplitude (ESA).

We used the first approach in our previous paper for
deriving theory based on the “coupled phase model”’~1°
and Shilov—Zharkikh cell model.!! This new electro-
acoustic theory has been developed so far only for the case
of thin double layer and negligible surface conductivity.
It is sufficient for many real dispersed systems including
ones which were used for dilution tests. The existing
version of this theory somewhat resembles Smoluchowski
theory for microelectrophoresis which is valid at the same
set of conditions. This analogy is especially strong at low
frequency where effect of the particle size on the elec-
troacoustic signal disappears. At this limit, the new
electroacoustic theory gains a very important feature of
the Smoluchowski theory, the electroacoustic signal is
independent of the particle shape.

However, it is known from the classical electrophoresis
theory that Smoluchowski theory is valid only when
surface conductivity is low, which is expressed as the
condition of a small “Dukhin number”"’

Du=RK—E<<1 (1)

m
where «¢ is the surface conductivity, K,, is a bulk
conductivity of the equilibrium medium, and a is a particle
radius. There are several electrophoretic theories!®-22
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Figure 1. Mechanism of the double layer polarization gen-
erating sedimentation current for a single particle.

which are more general than Smoluchowski theory
because they take into account surface conductivity effects.
This generalization turns out to be important for some
real dispersions.!” Following the same path, we should
develop a more general version of the electroacoustic
theory which would take into account surface conductivity
effects. To do this, we must modify our description of the
surface current. In our previous paper, we considered only
one cause of this current, liquid motion relative to the
particle surface. We should add now an electrodynamic
component to the existing hydrodynamic term. It is done
in this paper.

Theory

We have used before an analogy between colloid
vibration current and sedimentation current which is well-
known from classical colloid chemistry.!?-?32¢ Simply put,
charged particles sediment due to gravity will develop a
sedimentation potential between two vertically spaced
electrodes. If we externally short circuit these electrodes,
the current which flows is referred to as sedimentation
current. We can extend this simple concept to include
colloid vibration current by simply replacing the accelera-
tion of gravity with analogous acceleration caused by the
applied acoustic field. This idea is described in more detail
in the last section.

Figure 1illustrates a particle with a double layer moving
relative to the liquid. This motion involves ions of the
double layer. In this case, we consider only the positive
counterions opposing the negative charged particle sur-
face. The hydrodynamic surface current I; reduces the
number of the positive ions near the right particle pole
and enriches the double layer with extra ions near the left
pole. As a result, the double layer shifts from the original
equilibrium. The negative surface charge dominates at
the right pole, whereas extra positive diffuse charge
dominates at the left pole. The net result is that the motion
has induced a dipole moment.

This induced dipole moment generates an electric field
which is usually referred to as a colloid vibration potential
(CVP). This CVP is external to the particle double layer.
It affects ions in the bulk of the electroneutral solution
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beyond the double layer generating electric current I,.
This electric current serves a very important purpose. It
compensates for the surface current I, and makes the whole
picture self-consistent.

The next step is to add a quantitative description to
this simple qualitative picture. To do this we must find
a relationship between the CVP and the speed of the
relative motion particle and liquid (u, — u,;). We did this
in our previous paper! assuming that the double layer
thickness must be much smaller than particle radius a:

ka>1 2)

where « is reciprocal Debye length.

It is possible to eliminate this restriction in the future
following well-known papers by Babchin et al.26?7 The
second simplification required a surface conductivity «”
contribution to be negligible. It happens when the
dimensjonless Dukhin number Du introduced by Lykle-
mal’ sufficiently small ge=27 In this paper, we are
going to eliminate the second simplification and derive
theory which takes into account surface conductivity. We
will do this for the frequencies w which are below the
Maxwell—Wagner frequency w.,

w<<we=f (3)
0

where K, is a conductivity of the medium and ¢; and € are
the dielectric permittivitty of the vacuum and medium.

The condition of the thin double layer allows us to
describe the distribution of the electric potential ¢ with
the Laplace equation

Ap=0

The general spherical symmetrical solution of this equa-
tion

=—Ercos 0 + % cos 0 4)
r

contains two unknown constants E and d. Two boundary
conditions are required for calculating this constants.

The surface boundary condition reflects continuity of
the bulk current I and surface current I,

K, V¢ =div], (5)

In our previous work, we considered only hydrodynamic
component of the surface current neglecting electrody-
namic contribution associated with the surface conductiv-
ity. In this paper, we take into account both components,
which leads to the following expression for the surface
current:

duy ol 0¢
I,= GGOCar —x;ge-::—a (6)
Substitution of the eq 6 into eq 5 yields the first boundary
condition,
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2 _ _ (2 )i=_l 1
(a '")E (a 2K, ad o<t sin 6 or,—,

(N

We will use the cell model concept for deriving the second
boundary condition. According to this concept, we equally
redistribute liquid between particles and assume that
liquid associated with each particle creates a spherical
cell of the radius b. This radius is related with the particle
radius according to the following expression:

a3

b} == ®)
@
We prefer to use the Shilov—Zharkikh cell model!! over
the Levine one.5 All arguments for this decision are given
in ref 6. These two cell models yield the different
expressions for the macroscopic electric field (E):

Eerine = —— 722

cos 6 30,_,
- ¢
<E)‘°*","°‘— b cos 6,_,
s hitov

Cell boundary condition specifies the values ofthe normal
derivative of the electric potential on the cell surface. In
the Shilov—2Zharkikh cell model it equals

69 = ¢f‘=b p— __E + _(i .
or,., bcos0 b3 0 )
To find CVP, we should calculate unknown constants
E and d using eq 7 and eq 9 and substitute this resultinto
the following expression for the colloid vibration current:

il
Ir(r=b) _ marr=b _ 2d
" cos O cos 6 Km(E + -b_3) (10)

As a result, we obtain the following relationship between
CVI and tangential fluid velocity:

€€t du
CVI = — 3¢ _ e L2t an
L_+1__£_—o5¢asm r
K, a K,a

This expression has been derived for the monodisperse
system. Let us assume now that we have polydisperse
system with conventional N fractions. Each fraction of
particles has certain particle radius a;, volume fraction
@i, drag coefficient y;, and particle velocity u; in the
laboratory frame of references. We assume density of the
particles to be the same for all fractions p, as well as surface
conductivity «’ and ¢-potential. The total volume fraction
of the dispersed phase is ¢. Liquid is characterized by
dynamic viscosity 7, density pm, and velocity in the
laboratory frame of references . Generalization of the
cell model concept for the polydisperse system which is
described in refs 1 and 9 yields the following relationship
between the fractional particle radius and the radius of
the shell b;:

3 bi3
b'=— (12)
'
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equals
3; €d 1 Ouy
V=5 1 ¢ o5 “a; sin 0 dr,_,
(Kmai Kmai 2)? ( 1 3)

The radial derivative from the tangential velocity had
been calculated in our previous paper?,

3wy — uphloy)
sin 6 dr,_, I(a,)

1 Ouy

(14)

where h and I are special functions given in Appendix 2.

The coupled phase model allows us to calculate the
difference u; — um for each fraction without using the
superposition assumption:'

P
(—" - I)VP
Pm
ul um = N
Yi P, Y
(jwpp +—]|1+ z 2 i
: 1 - @lpy i=1 Vi
Jop, +—
(15)
where
v = e,
‘' 2af
F‘a.nlockcs = Gﬂﬂag(ui - um)

The values of the special functions h(x) and I(x) are
presented in Appendix 2.

We can use eq 15 for calculating speed of the liquid
motion relative to the particle surface only if we neglect
electroosmotic flow caused by CVP. This electroosmotic
flow is a secondary effect, but it would still need justifica-
tion for being neglected. This is done in Appendix 1, where
we show that the electroosmotic flow is reciprocally
proportional to (ka)>.

The final expression for CVI can be obtained as a sum
of the fractional currents generated by the fractional dipole
moments. This expression is

9eet(p, — Pm)VP

47 .
1 e:H(a;)

g{(Dui +1) — (Dy; — 0.5)p 3H,
jalI(ai)(pp - pm(— + 1))

2I.
3H,
ZPya + 1)

Cvl=
N

i
i

Pp

—pal—+1
Py~ Pn| 5

i

1

(16)

where o = a+v/ q)/21{, B= bosa, v is the _kinemati_g viscosity,
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the pressure and frequency of the ultrasound, and special
functions h, H, and I are given in the Appendix 2, H; =
H(ay, I = Iay).

According to the assumption of the monodisperse surface
conductivity, the value of the fractional Dukhin number
equals
KU
Duy; = 74

mai

a7

This expression can be easily converted to the formulas
from the previous paper if we neglect terms with the
Dukhin number and use Maxwell-Wagner theory for
conductivity?®

K -
=5 = __l_i_ 18)
K, 1+0.5¢

Discussion

Equation 16 describes the electroacoustic effect only
below the Maxwell—Wagner critical frequency (see eq 5).
This assumption restricts electrolyte concentration range
for the given frequency of the particular measurement.
For instance, if we measure CVI at 1 MHZ, eq 18 is
applicable for electrolyte concentrations which exceed
0.001 mol/L.

The condition of the thin double layer (eq 2) is also
related to the concentration of electrolyte. For the given
concentration, it determines the minimum size of the
particles. In general, assumption of the thin double layer
is valid when

ka > 20

This condition limits the particle size range to be above
200 nm for the electrolyte concentration 0.001 mol/L. In
the case of the higher ionic strength, the particle size range
expands. For instance, in the case of 0.1 mol/L, eq 18 works

for particles above 20 nm in size.
To characterize the surface conductivity influence, we

suggest using the following parameter:

CVI(Du=0) — CVI
CVI(Du=0)

which compares the CVIvalue according to the eq 16 with
CVI at zero surface conductivity (Du = 0). Figure 2
illustrates graphically the dependence of this parameter
on the Dukhin number for dispersion with 10 vol% of the
particles with 1 um median size, 0.2 standard deviation,
density of particles is 3 g/cm?, density of the liquid 1 g/cm?.

It is seen that contribution of the surface conductivity
exceeds 10% as Dukhin number becomes larger than 0.1.
We suggest considering this value Du = 0.1 as a critical
point for characterizing importance of the surface con-
ductivity. In the case of Du < 0.1, we can neglect surface
conductivity effects. The possible error in the calculated
value of ¢-potential will not exceed 10%.

It is interesting to estimate the contribution of the
surface conductivity in terms of {-potential instead of the
Dukhin number. For this purpose, we need a functional
relationship between ¢-potential and the Dukhin number.
There are several different expressions suggested by
various authors. Appendix 3 gives the simplest one (eq
3.1) and the most complicated one (eq 3.2). This most
complicated expression is the most adequate because it
takes into account surface conductivity under the slipping

Dukhin
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Figure 2. Theoretically calculated difference between CVI (eq
16) and CVI at Du = 0 versus Dukhin number for dispersion
with 10 vol% of 1 um particles with a standard deviation of 0.2.
Density of the liquid is 1 g/cm3?; that of the particles is 3 g/cm3;
the frequency is 1 MHz.
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Figure 3. Theoretically calculated difference between CVI (Du
=0.1)and CVI(Du = 0) versus standard deviation for dispersion
with 10 vol% of 1 um particles. Density of the liquid is 1 g/cm?;
that of the particles is 3 g/cm?; the frequency is 1 MHz.

Table 1. Values of the {-Potential Which Yields a Dukhin
Number Equal to 0.1 for the Particular Values of ka

¢mVl] 36 57 71 83 92 100 106 112 118
ka 20 30 40 50 60 70 80 90 100

it contains two more unknown parameters: Stern po-
tential and anomalous surface conductivity. That is why
we suggest using the simplest form, eq 3.1. The corre-
sponding values of {-potential are given in the Table 1.
Surface conductivity is not important if ¢-potential is
smaller than the number given in Table 1 for the particular
xa. However, we should keep in mind that anomalous
surface conductivity may change this conclusion and make
surface conductivity effects important even at smaller
{-potentials.

In addition, the contribution of the surface conductivity
depends on the polydispersity of the particle size distri-
bution. Figure 3 illustrates this dependence for the same
dispersion as for Figure 2 and Du = 0.1. It is seen that
for wide particle size distributions surface conductivity is
more important because of the larger content of the small
particles. Conclusions formulated above are valid only for
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Conclusions

We have derived a more general version of the new
electroacoustic theory which does not use O'Brien’s
relationship between electroacoustic signal and dynamic
electrophoretic mobility. This new version does take into
account surface conductivity effect. As a result, it is
supposed to be valid for all polydisperse concentrated
dispersions with a thin double layer.

Appendix 1: Electroosmotic Contribution

Electric field associated with the electroacoustic effect
creates additional electroosmotic flow of the liquid relative
to the particle surface. Let us denote the value of this flow
speed as uq. We neglected uq comparing to the (v, — un)
which was yielded by the coupled phase model. Is it
justified?

To answer this question we should calculate u, which
is done here. Electroosmotic flow is potential in the case

of the thin double layer

u=—grad A (1.1)
d

A=—-Vrcos 6+ —2'3 cos 6 1.2)
r

In addition, we can use the following boundary conditions:

u(r=a)=0 (1.3)
u r=a) = — S%CE(; =-VA (1.4)

The average speed of the electroosmosis ue equals the
value of the local liquid speed on the surface of the cell,

_ u(r=b)
™ cos O

u (1.5)

We can calculate the value of the potential A from the egs
1.2-1.4:

3

2eeqt Eqlr=a)
_ Zeeot Bolr=a) (r + —; 2)cos 0  (16)
r

3y sinf

where Ej, is a tangential component of the electric field
(eq 4),

E,(r=a) = —V,¢(r=a) —(E - %)sin 6 (L7
a

Values of the constants E and d can be taken from the
given above theory. As a result, we have the following
expression for u.:

Lzt 1-9)? 1 B,
el T 3 naKm & P sin @ or
[F) ez os)
(1.8)

At this point, we can use eq 14 in order to introduce the
(up — um). As a result, we have the following estimate for
electroosmotic contribution:

wg (el 1

= (1.9
-u, 1 K,a (xa )

2
u, )
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2¢,(RT)?
m=———
nDF?
¢ =FYRT

where F is Faraday number, R is a gas constant, T is the
absolute temperature, and D is effective diffusion coef-
ficient.

This expression confirms that electrosmotic contribution
is small within the adopted scope of the thin double layer
assumption eq 2.

Appendix 2: Special Functions

There are several special functions used in this theory.
They are specified in this section.

H(a) = th(a) _ idh(x)

2a 2dx *=¢
h(x) = hy(x)hy(B) — hy(B)hy(x)
I=1B) — I(a)
I(x) = I,(x) — I(x)
ILix)=
— 2 h
— hy(B) exp(x(1 + i))[%ﬁ-ai) + i("—a - j—;s - %)
I(x) =
_ _ 3= fxP 3x _ 1)]
ho(B) exp(—x(1 + z))[ o + L(ﬁ" e ;)-
hyx) =
M JC—-f-—lsinx— cosx+i(x+ lcosx-i-sinx)
x x
h2(x) =

expxfx—1. 1 —x .
—%—x—smx—cosx+t( = cosx+sm:c)

Appendix 3: Various Approximations for Dukhin
Number

There are several different relationships between
Dukhin number and parameters of the double layer
depending on the DL model.28 For instance, the Australian
schoo]121320-22 yses the simplest DL model assuming
equality of the Stern potential and ¢-potential. Their
version of the Dukhin number of the symmetrical elec-
trolyte is the following:

3.1

Du = (1 n §_,_72_1_)exp(zF§/2RT)
Ka

z

This approximation is not adequate because surface
conductivity almost always exceeds values calculated
assuming simple Gouy—Chapman DL model (see re-
view?8), For instance, Midmore and Hunter wrote in the
paper:2? “This treatment assumes no contribution to the
electric conduction by any Stern layer ions and that the
Poisson—Boltzmann equation applies up to the outer

(28) Dukhin, S. S. Electrochemical characterization of the surface of
a small particle and nonequilibrium electric surface phenomena. Adv.
Colloid Interface Sci. 1995, 61, 17—49.

(29) Midmore, B. R.; Hunter, R. J.J. Colloid Interface Sci. 1988, 122,
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Helmholtz plane. The diffuse layerions between the shear
plane (where ¢ is measured) and the outer Helmholtz plane
(where Stern potential . is measured) do conduct a current
and this anomalous surface conduction (inside the shear
plane) dramatically reduces the mobility for a given value
of ..

Another approached has been promoting by S. Dukhin
and his colleagues.1117719.2528 They suggest to consider
the more general DL model (Stern model) and take into
account electric conductance under the slipping plane and
even, perhaps, within the surface layer. The most general

Dukhin

expression for the Dukhin number is the following:

5 z oa_o + _ _-—
Du=2(chZ - 1+ 6msh’Z] + 2862 Lol —z)
ka 2 2D(ka)

2
3.2)

where «*® is the anomalous surface conductivity.
Expression 3.2 is certainly more general but it contains

more unknowns compared to the expression 3.1. The way

todetermine these unknowns is described in the review .8
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