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Electroacoustic characterization of concentrated dispersed systems requires an adequate theory of dynamic
electrophoretic mobility which takes into account particle—particle interaction. The concept of the “cell

model” provides convenient and comprehensive m

eans for creating this theory. There are two different

versions of the electrokinetic cell model. The first one was introduced by Levine and Neale, the second one
by Shilov and Zharkikh. The Levine—Neale cell model gives a large discrepancy with experimental data
as it was shown by O’Brien and Hunter. We suggest several reasons indicating that the Shilov—Zharkikh
cell model is more adequate than the Levine—Neale one. First of all, it gives transition to the Smolichowski

law for electroosmosis which is valid for concentrate:

d systems. The Shilov—Zharkikh cell model yields a

symmetrical Onsager relationship between kinetic coefficients as well as the Maxwell—Vagner law for
electric conductivity. In addition, the Shilov—Zharkikh cell model predicts much stronger volume fraction
dependence of dynamic electrophoretic mobility. Such strong dependence corresponds to O’Brien—Hunter

experimental data which could not be explained by the
of the theory using different constrains. The first ver
account surface conductivity. The second version ne

Levine—Neale cell model. We developed two versions
sion is valid only at low frequency, but it takes into
glects surface conductivity. At the same time this

second version takes into account inertia effects which makes it valid at high frequencies. We do not
address a question of the appropriate frame of references for the dynamic electrophoretic mobility. All
calculations are performed in the frame of references which is associated with the liquid.

Introduction

Electroacoustics is a relatively new technique for
characterizing concentrated dispersed systems. This
technique requires a theory which connects measured
electroacoustic parameters such as the colloid vibration
current (CVI)! or electrosonic amplitude (ESA)? with
properties of the given dispersed system including &-po-
tential and particle size. This theory must take into
account particle—particle interaction which is an essential
feature of the concentrated systems. Unfortunately, the
general theory like this does not exist yet.®

At the same time there is an intermediate theory which
is valid in concentrated systems and connects measured
electroacoustic signals with “dynamic electrophoretic
mobility” ua. This theory has been created by O’Brien.* It
yields the following general relationship:

ESA(CVI) = Copuy (1)

where C is a cell constant, o is the density contrast, ¢ is
the volume fraction of the solid; ESA corresponds to the
case when the electric field E is a driving force. The
gradient of the pressure is a drving force in the case of
CVL
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Dynamic electrophoretic mobility can be used as a useful
system characteristic. It is sufficient, for instance, for
determining the isoelectric point. However, dynamic
electrophoretic mobility provides only partial, approximate
characterization. Detailed, complete characterization
includes information about particle size distribution,
-potential, and other surface properties.

There are several theories describing relationship
between dynamic mobility and other properties of the
dispersed system. The most known theories were created
by O’Brien? for a thin double layer and by Babchin with
co-authors56 for any double-layer thickness. These theories
do not take into account particle—particle interaction. As
a result, they are valid only in the dilute case with the
volume fraction below 5%.

There are two different approaches for incorporating
particle—particle interaction into the electrokinetic theory.
The first approach explores a “cell model” concept. It was
applied to the electroacoustic theory initially by Marlow!
and later generalized by Ohshima.” Both these theories
use the Levine—Neale version of the cell model.?

There is the second completely different approach to
deriving the expression for dynamic mobility. It was
suggested by Rider and O’Brien.? They used an expansion
of the dynamic mobility on the volume fraction. Only the
first term of the expansion was retained which made this
theory suitable only for sufficiently low volume fraction.
It turned out that this approach is associated with big
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mathematical complications even for the first term of the
expansion. It does not look promising to include further
terms of the volume fraction expansion which would be
necessary for a wider range of the solid content. That is
why we concentrate our attention on further development
of the cell model approach.

It is important to mention that there is a certain doubt
about the validity of the cell model concept in the
electroacoustics. This doubt comes from the O’Brien,
Rowlands, and Hunter experimental work!® where they
tested electroacoustic theory based on the Levine—Neale
cell model. They discovered a big discrepancy between
theory and experiment. This experimental test discour-
aged further development of the cell model electroacoustic
theories. The failure of the Levine—Neale cell model does
not mean that a complete cell model concept is wrong.

There are several pure hydrodynamic cell models which
are successfully applied for solving complicated hydro-
dynamic problems in concentrated systems. Electrokinetic
cell models are the results of some generalization of the
hydrodynamic cell models. There are many ways to
perform this generalization and, correspondingly, many
ways to create different electrokinetic cell models.

The difference between electrokinetic cell models is
related to the description of the electric characteristics.
The relationship between macroscopic experimentally
measured electric properties and local electric properties
calculated using cell concept varies for different cell
models. For instance, the Levine—Neale cell model speci-
fies this relationship using one of the many possible
analogies between local and macroscopic properties.
Macroscopic properties are current density (/) and electric
field strength (E) . They are related to local electric current
density I and electric field V¢ according tq the Levine—
Neale cell model with the following expressions:

_ I
D= b cos 6, 2)
—__1 9o
&) = cos 6 or,_, @)
where radius b is a cell radius:
3
b=% @)

@

a is a particle radius, @ is a volume fraction, and r and
0 are spherical coordinates associated with the particle.

Relationships 2—3 are not unique. There are many other
ways to relate macroscopic and local fields. It means that
we need a set of criteria to select a proper cell model.
These criteria have been suggested in the electrokinetic
cell model created by Shilov and Zharkikh.!! Their two
criteria determine a proper choice of the macroscopic
“fields” and “flows”.
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The first criteria is a well-known Onsager relationship
which constrain values of the macroscopic particles velocity
relative to the liquid (V), macroscopic pressure (P), electric
current (), and field (E):

W __ B
Diap=0  (AP)p—o

(5)

This relationship requires a certain expression for
entropy production X:

z=%mwyuwmm) 6)

Shilov and Zharkikh used this relationship between
“fields”, “flows”, and entropy production in order to derive
the cell model condition for macroscopic properties. It
turned out that the expression for the macroscopic field
strength is different comparing to that of Levine—Neale:

(Ey=—0° %)

~ b cos 0.

whereas the expression for the macroscopic current is the
same in both models.

This cell model was criticized by Kozak and Davis!?
because according to them this model does not reduce to
the Smoluchowski law.

Smoluchowski law is a very important test for any
electrokinetic theory because it is valid for any geometry
and volume fraction. Failure to satisfy the Smoluchowski
law testis a clear indication that the theory is not correct.
However, Shilov and Zharkikh wrote in their paper that
their theory met Smoluchowski law requirement. They
even made a stronger conclusion that it was the Levine—
Neale cell model which did not reduce to the Smoluchowski
law. Wg address this difference in opinions in the next
section. We show that this difference comes from the
misunderstanding of the Smoluchowski law in the case
of concentrated systems. The version of Smoluchowski’s
law which is valid in concentrated systems confirms the
Shilov—Zharkikh cell model.

We use this cell model for characterizing dynamic
electrophoretic mobility in the concentrated systems. We
will derive two expressions for dynamic electrophoretic
mobility using different simplifying constrains. The first
one will be valid only at low frequencies but it includes
surface conductivity contribution. The second one neglects
surface conductivity effects but it will be valid at low and
high frequencies.

These expression predicts much stronger dependence
of the dynamic mobility from the volume fraction than
the Levine—Neale cell model. This explains the results of
the O’Brien, Rowlands, and Hunter experimental test.10

We conclude that the Shilov—Zharkikh cell model
provides consistent basis for electroacoustic theory in
concentrated systems.

Smoluchowski Laws for Electrophoresis and
Electroosmosis

The Smoluchowski law for electrophoresis expresses
static electrophoretic mobility 4 through dielectric per-
mittivity € and viscosity # of media and &-potential of
particles:

p=-—= ®)
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There are two conditions restricting applicability of
Smoluchowski law. The double-layer thickness must be
much smaller than the particle radius a:

ka>1 (C)]

where « is the reciprocal Debye length.

The second condition requires a surface conductivity «” ‘

contribution to be negligibly small. Tt happens when
dimensionless Dukhin number Du introduced by Lykle-
ma?? is sufficiently small:

Du= Ié‘”a <1 (10)

m

where K., is a conductivity of the medium outside the
double layer.

Smoluchowski law for electrophoresis (8) is usually
derived for a single particle in the infinite liquid. The
electrophoretic mobility u is defined in (8) as the ratio of
field-induced particle velocity V to homogeneous field
strength Eoinliquid at alarge distance from the particle:

_V
# Eext

(11)

The Smoluchovski law (8) is applicable to any geo-
metrical form of the particle. Independence of applicability
of (8) on the particle’s geometry makes it applicable to the
arbitrary system of particles, including the cloud of
particles, or concentrated suspension.

But, to apply Smoluchovski’s law-in form (8) to
concentrated suspension, one should take into account
the difference between the external electric field in free
liquid outside the suspension E,; and the averaged electric
field inside the dispersion (E). Static mobility in (8) and
(11) is determined with respect to field strength in free
liquid outside the suspension.

There is another form of Smoluchivski’s law, more
common in the case of concentrated suspensions, in which
figured another value {uy of electrophoretic mobility (or
electroosmotic velocity), defined with respect to (E):

_ eeos K,
)= - K. (12)

where K, the macroscopical conductivity of the dispersed
system and

v
(E)

Smoluchowski’s electroosmosis law was expressed in
this form by many authors including Kruyt and Over-
beek,4 Dukhin,® and O’Brien.! This law is valid under
the same conditions, (9) and (10).

These two definitions of the electrophoretic mobility
are identical if we take into consideration the well-known'’
relationship between Ee: and (E):

w = (13)
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1974.
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E) _En
E, K

s

(14)

Both expressions, (8) and (14), specify electrophoretic
mobility x and (u) independently on the volume fraction
and system geometry. It means that the comparison with
Smolchowski’s law (in the limiting cases when conditions
9 and 10 are valid) is a validity test of the cell model which
pretends to describe the volume fraction dependence of
the electrokinetic effects in concentrated suspensions. Both
versions of Smoluchowski’s law can be used for this
purpose. However, expression 12 is more appropriate for
this test comparison because it emphasizes the relations
between the fields and flows inside the concentrated
disperse system.

We will show later in this paper that the Levine—Neale
cell model for limiting case (9) and (10) gives

w=— (15)

which is neither (12) nor (8) and thereby appears to be
unable to describe the volume fraction dependence of (u)
given by the factor KJ/K,inexact Smoluchovski’s law (12).

Disregarding the existence of two different definitions
of electrophoretic mobility may lead sometimes to er-
roneous conclusions. For instance, Kozak and Davis!?
meant mistakenly expression (15) when they declared that
the Shilov—Zharkikh cell model does not meet Smolu-
chowski’s law requirement. Actually, the Shilov—Zharkikh
cell model transfers to expression 12 and predicts much
stronger dependence on volume fraction than expression
8. These stronger volume fraction effects were confirmed
experimentally using electroosmosis. There is a review of
these experimental works published by Dukhin and
Derjaguin.®

To specify volume fraction dependence, one must express
thesconductivity of system K, through the conductivity of
medium K,,, conductivity of particle K, including surface
conductivity and volume fraction ¢. There are several ways
to do this. One of them was used by O’Brien.®* We suggest
that the Maxwell—Vagner!? theory be used, which is one
of the versions of the cell model. This theory gives the
following relationship between conductivities:

K, 1-—2¢F*
K, 1+ ¢F* (16)
where
e K K an
2K, + K,

It is important to mention that the Shilov—Zharkikh
cell model yields the same results for conductivity as the
Maxwell—Vagner theory. It makes this version of the cell
model self-consistent.

In the case of the nonconducting particles with a weak
surface conductivity (Du < 1) function F* = 0.5 and
expressions 13 and 12 give the following result for
electrophoretic mobility:

et (1 — @)

=—— 18
w 7 (14 0.5¢) (18
This expression is a low-frequency limit for dynamic

electrophoretic mobility with negligible surface conduc-
e lter Aflante

B
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Shilov—Zharkikh Cell Model at Low Frequencies

Dynamic electrophoretic mobility in general depends
on the frequency of the driving field w (electric field or a
sound wave). It happens because ofthe particles and fluid
inertia. However, this dependence disappears at the
sufficiently low frequency. This frequency should be low
enough for allowing sufficient time for electric and
hydrodynamic fields to reach a stationary configuration.
It means that w must be much less than the frequency of
hydrodynamic relaxation w, and frequency of electrody-
namic relaxation we:

w<w,= _zﬂ_i (19)
K,
0w, = T (29)

where py, is the density of the medium.

At the same time we restrict the frequency from below
assuming that it is above the concentration polarization
limit w.. This condition is certainly valid for the elec-
troacoustic technique which operates with frequencies in
the MHzrange. It means that the frequency should satisfy
the following restriction as well:

2D
a2

(21)

0> o, =

where D is the effective diffusion coefficient.

It is known that if the frequency exceeds w. the
concentration of the electrolyte remains constant. There
is no need to consider ion fluxes separately at this high
frequency, which simplifies mathematics dramatically.

There is also one restriction which we apply on the
particle size. We assume that the wavelength is much
larger than the particle size which means that

C

<K= (22)

a

where c is a sound speed.

This restriction allows one to consider liquid as incom-
pressible.

The electrokinetic phenomena in the specified above
range of low frequencies arise because of the mutual
coupling of the three nonreversible local fields: fluid
velocity v, hydrodynamic pressure P, and electric potential
¢. The space distribution of these fields is described by
the following system of equations within the specified
frequency range:

nAv = —VP (23)
Vv=0 (24)
Ap=0 (25)

This system of equations has the following general
solution in the spherical coordinate system (r, ) associated
with the center of the given particle:

3 2
b, = g cos e(A,— 24.% + o.m# + A45:—) 26)

3 2
vy = g sin 0(—A1 - Azc:_g - 0'2A3$ - 0'5A4‘;l) @D
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2
P =24 0(A35 + A492—) (28)
a a r
2
6 ="2E cos O(A% 4 AS‘:—Z) (29)

where R is a gas constant, T is the absolute temperature,
and F is the Faraday constant.

To determine unknown constant A;, we must specify
boundary conditions on the particle surface at r = @ and
on the cell surface at » = b where b is the cell radius (4).

Boundary conditions on the particle surface reflect the
following facts: (1) Liquid cannot penetrate through the’
particle surface

v(r=a)=0 (30)

(2) electroosmotic slip

(31)

(3) compensation of the normal current by surface current
I, = «°V¢

K, V¢ = div ], (32)

Cell boundary conditions reflect hydrodynamic particle
interaction. Forinstance, the hydrodynamic condition can
be used as suggested by Kuvabara:

g Uy 8v,]

? r —% =0 (33)

rot Uy = [ —b =

There are two more cell conditions which specify values
of the two acting thermodynamic forces (VP and V¢) on
the cell surface for particular electrokinetic phenomena.
For instance, in the case of electrophoresis the gradient
of pressure equals zero:

VP_, = ”£3¢A4 =0 (34)

There has been no difference so far between the Shilov—
Zharkikh and Levine—Neale cell models. The next condi-
tion which specifies electric field brings up this difference.
According to Shilov and Zharkikh, this condition is

% __
b cos 0, E (35)

The system of the boundary conditions (30—35) yields
the following values of unknown parameters A;:

A =24,
eeglaE 1
2~ "yD 2(1 + Du) + ¢(1 — 2Du)
A;=A,=0
AS 2A611_+2%l;
_aFE 1—2Du

Ag

" RT 2(1+ Du) + ¢(1 — 2Du)

The last step is the calculation of the average liquid
volume flow I, and average electric charge flow I,.
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According to Shilov and Zharkikh, these flows are
expressed through the corresponding local fields on the
cell surface:

v

v~ cos 0, (36)
\%
=K e @
cos 0,

Kinetic coefficients for electrophoresis and electric
conductance are defined as a ratio of corresponding flow
divided by the electric field strength. Asa result, we obtain
the following expressions for the dynamic electrophoretic
mobility and conductivity:

_ ek 4-g) (38)
7 (1+ Du + 0.5¢p(1 — 2Dw)

E __1+Du— @(1 — 2Du) (39)

K, 1+ Du+0.5¢(1—2Du)

Itis important to mention that formulated hereis system
of thermodynamic forces (VP and V¢) and thermodynamic
flows (I, and I,) that satisfies the Onsager reciprocal
relationship. It is possible to show that

I

4

I
== (40)
Egp—o  VPp=o

It is an additional important argument confirming
validity of the Shilov—Zharkikh cell model.

Shilov—Zharkikh Cell Model Including Inertia
Effects

To take into account inertia effects, we eliminate
restriction 19 on the frequency. It means that we will
consider here nonstationary hydrodynamic effects and use
nonstationary Navier—Stocks law:

nrotrotv + VP = —p, %lt, (41)

which is to replace eq 23 from the previous section.
We also neglect effects related to the surface conduc-

tivity x°, which means according to Lyklema®? that we

assume the Dukhin number to be much less than 1:

Du<x1 (42)

It allows us to replace the particle surface boundary
condition (32) with the condition of the zero current
through the particle surface: '

o _
o =0 (43)

r=a

The particle velocity is calculated from the balance of
forces acting on the particle:

4 3 dvu,
ffnik dS,— -3-:rta pp—at— (44)

The solution of the bulk equations with the specified
houndary conditions vields the following expression for

Dukhin et al.

w_ Semeel (11— @H( + I(o,f)
#i = 501+ 0.5¢) L5H(@) — ol(0,f)

(45)

where o = avw/v, B = ba/a, v is the kinematic viscosity,
and w is the frequency.

th(a) (idh(x))

H() =5~ 2dx

8 %
Iop) = [} h(x)(l - 5) d

h(x) = hy(x)ho(B) — hy(B)hy(x)

exp(—
h(x) =—)%-—x)-g—c—i_—lsinx —cos x +

i(x +1 cos x + sin x)]
ho(x) = ex;;(x)[x_;_l_ sin x + cos x +

.(1 -
1

This expression determines the dynamic electro-
phorewtic mobility in the frame of reference related to the
liquid.

Figure 1 illustrates the frequency dependence of this
dynamic electrophoretic mobility expressed in mV for
different volume fractions. The dynamic mobility shown
in Figure 1, u, corresponds to the mobility Uy assuming
the following normalization:

X .
cos x + sin x)]

Figure 1 corresponds to the density of particles 2.2 g/cu-
cm and-particle size 1 um.

Conclusions

A comparison of the two existing cell models for
electrokinetics (Levine—Neale and Shilov—Zharkikh)
confirms a significant difference between them. There are
several arguments indicating that the Shilov—Zharkikh
model is more adequate.

(1) Electrophoretic mobility calculated using the Shilov—
Zharkikh model reduces at weak surface conductivity (Du

26+
2490

J dilut‘\.\.

23 anw-n A N

204 10%v L
z 131‘.— A AA A aa g
= 1 20%v1 ‘*S:\
= ‘6; [ 23
IR SR g S SR S SR A Y
g 14-| 30%v1 \
S YT VY VNN NN Yy \‘ki
gy 40%v1 N
£, 10+
= 1 XS

8-
6
1
+
P I :
10" 10° 10’ 10/

frequency [MHz]

Figure 1. Dynamic electrophoretic mobility versus frequency
for various volume fractions. Particle density is 2.2 g/cu-cm;
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< 1) to the Smoluchowski law derived for electroosmosis
which is valid in concentrated systems.

(2) The Shilov—Zharkikh cell model yields in addition
to electrophoretic mobility an expression for electric
conductivity which correlates with the Maxwell—Vagner—
O’Konski theory.

(3) The Shilov—Zharkikh cell model satisfies Onsager
resiprocal relationship.

(4) The Shilov—Zharkikh cell model predicts much
stronger dependence of the dynamic electrophoretic
mobility from the volume fraction. It explains the observed
discrepancy between the theory and experiment observed
by O’Brien with co-authors.?

All these arguments lead to the conclusion that the
Shilov—Zharkikh cell model is suitable for developing
consistent electroacoustic theory. The expression for

Langmuir, Vol. 15, No. 10, 1999 3457

dynamic electrophoretic mobility derived in this paper
describes particle motion relative to the liquid. It is not
sufficient for experimental interpretation because the
measured electroacoustic signal is sensitive to the motion
of both liquid and particle. The problem of the adequate
frame of references is not considered in this paper. It will
require an additional theoretical consideration. We have

" just shown here that the Shilov—Zharkikh cell model can

be used as a convenient and adequate basis for further
theoretical development.
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